

CLIENT:

As Cancelas

PROJECT:

DEMO PROJECT 1

DATE:

5/4/2016

Content

1.	Site Survey Summary	7
	1.1. Wireless network survey information	7
	1.2. Summary of detected networks	8
2.	Networks	. 14
3.	Access Points	. 15
4.	Location Survey: 0 - Main floor	. 19
	4.1. Location details	. 19
	4.1.1. Survey Route	. 20
	4.1.1.1. First scan at main floor	. 22
	4.1.1.2. Scan passive + active survey	. 23
	4.1.1.3. Scan passive + active survey 2	. 24
	4.1.2. "0 - Main floor" Access Point Position	. 25
	4.2. Network Survey: AsCancelas	. 27
	4.2.1. Network Details	. 27
	4.2.1.1. AP-based Information	. 27
	4.2.1.2. Channel-based Information	. 28
	4.2.1.3. "AsCancelas" Access Point Position	. 30
	4.2.2. WiFi Quality	. 32
	4.2.2.1. Web Browsing WiFi requirements	. 32
	4.2.2.1.1. RSSI Coverage	. 32
	4.2.2.1.2. Simultaneous RSSI Coverage	. 33
	4.2.2.1.3. Channel Overlap	. 34
	4.2.2.1.4. Co-Channel Interference	. 35
	4.2.2.1.5. Latency	. 36
	4.2.2.1.6. Bandwidth	. 37
	4.2.2.1.7. Packet Lost	. 38
	4.2.2.1.8. Access Point Roaming	. 39
	4.2.2.2. VoIP over WiFi requirements	. 40
	4.2.2.2.1. RSSI Coverage	. 40
	4.2.2.2. Simultaneous RSSI Coverage	. 41

4.2.2.2.3. Channel Overlap	42
4.2.2.2.4. Co-Channel Interference	43
4.2.2.2.5. Latency	44
4.2.2.2.6. Bandwidth	45
4.2.2.2.7. Packet Lost	46
4.2.2.2.8. Access Point Roaming	47
4.2.3. Survey	48
4.2.3.1. RSSI Heatmap	48
4.2.3.2. RSSI detailed by AP	49
4.2.3.3. RSSI detailed by Channel	52
4.2.3.4. Number of APs	54
4.2.3.5. AP Coverage	55
4.2.3.6. Channel Coverage	57
4.2.3.7. Channel Overlap	58
4.2.3.8. Detailed Grid	59
4.2.3.9. SNR Heatmap	62
4.2.3.10. Data Rate Heatmap	63
4.2.3.11. Data Rate detailed	65
4.2.3.12. Cell Density Heatmap	68
4.2.3.13. Retries Rate Heatmap	69
4.2.3.14. Bandwidth	70
4.2.3.15. Latency	71
4.2.3.16. Packet Loss	72
4.2.3.17. Roaming	73
5. Location Survey: +1 - Stores	75
5.1. Location details	75
5.1.1. Survey Route	76
5.1.1.1. Scan between stores	78
5.1.1.2. Scan passive + active survey	79
5.1.2. "+1 - Stores" Access Point Position	80
5.2. Network Survey: AsCancelas	82

5.2.1. Network Details	82
5.2.1.1. AP-based Information	82
5.2.1.2. Channel-based Information	83
5.2.1.3. "AsCancelas" Access Point Position	85
5.2.2. WiFi Quality	87
5.2.2.1. Web Browsing WiFi requirements	87
5.2.2.1.1. RSSI Coverage	87
5.2.2.1.2. Simultaneous RSSI Coverage	88
5.2.2.1.3. Channel Overlap	89
5.2.2.1.4. Co-Channel Interference	90
5.2.2.1.5. Latency	91
5.2.2.1.6. Bandwidth	92
5.2.2.1.7. Packet Lost	93
5.2.2.1.8. Access Point Roaming	94
5.2.2.2. VoIP over WiFi requirements	95
5.2.2.2.1. RSSI Coverage	95
5.2.2.2. Simultaneous RSSI Coverage	96
5.2.2.3. Channel Overlap	97
5.2.2.2.4. Co-Channel Interference	98
5.2.2.5. Latency	99
5.2.2.2.6. Bandwidth	100
5.2.2.7. Packet Lost	101
5.2.2.8. Access Point Roaming	102
5.2.3. Survey	103
5.2.3.1. RSSI Heatmap	103
5.2.3.2. RSSI detailed by AP	104
5.2.3.3. RSSI detailed by Channel	107
5.2.3.4. Number of APs	109
5.2.3.5. AP Coverage	110
5.2.3.6. Channel Coverage	112
5.2.3.7. Channel Overlap	113

	5.2.3.8. Detailed Grid	114
	5.2.3.9. SNR Heatmap	117
	5.2.3.10. Data Rate Heatmap	118
	5.2.3.11. Data Rate detailed	120
	5.2.3.12. Cell Density Heatmap	123
	5.2.3.13. Retries Rate Heatmap	124
	5.2.3.14. Bandwidth	125
	5.2.3.15. Latency	126
	5.2.3.16. Packet Loss	127
	5.2.3.17. Roaming	128
6. Loca	ation Survey: +2 - Cinema	130
6.1.	Location details	130
6	1.1. Survey Route	131
	6.1.1.1. Scan through restaurants	133
	6.1.1.2. Scan passive + active survey	134
6	1.2. "+2 - Cinema" Access Point Position	135
6.2.	Network Survey: AsCancelas	137
6	2.1. Network Details	137
	6.2.1.1. AP-based Information	137
	6.2.1.2. Channel-based Information	138
	6.2.1.3. "AsCancelas" Access Point Position	140
6	2.2. WiFi Quality	142
	6.2.2.1. Web Browsing WiFi requirements	142
	6.2.2.1.1. RSSI Coverage	142
	6.2.2.1.2. Simultaneous RSSI Coverage	143
	6.2.2.1.3. Channel Overlap	144
	6.2.2.1.4. Co-Channel Interference	145
	6.2.2.1.5. Latency	146
	6.2.2.1.6. Bandwidth	147
	6.2.2.1.7. Packet Lost	148
	6.2.2.1.8 Access Point Roaming	149

(6.2.2.2. VoIP over WiFi requirements	. 150
	6.2.2.2.1. RSSI Coverage	. 150
	6.2.2.2. Simultaneous RSSI Coverage	. 151
	6.2.2.2.3. Channel Overlap	. 152
	6.2.2.2.4. Co-Channel Interference	. 153
	6.2.2.2.5. Latency	. 154
	6.2.2.2.6. Bandwidth	. 155
	6.2.2.2.7. Packet Lost	. 156
	6.2.2.2.8. Access Point Roaming	. 157
6.2	2.3. Survey	. 158
(6.2.3.1. RSSI Heatmap	. 158
(6.2.3.2. RSSI detailed by AP	. 159
(6.2.3.3. RSSI detailed by Channel	. 162
(6.2.3.4. Number of APs	. 164
(6.2.3.5. AP Coverage	. 165
(6.2.3.6. Channel Coverage	. 167
(6.2.3.7. Channel Overlap	. 168
(6.2.3.8. Detailed Grid	. 169
(6.2.3.9. SNR Heatmap	. 172
(6.2.3.10. Data Rate Heatmap	. 173
(6.2.3.11. Data Rate detailed	. 175
(6.2.3.12. Cell Density Heatmap	. 178
(6.2.3.13. Retries Rate Heatmap	. 179
(6.2.3.14. Bandwidth	. 180
(6.2.3.15. Latency	. 181
(6.2.3.16. Packet Loss	. 182
(6.2.3.17. Roaming	. 183

1. SITE SURVEY SUMMARY

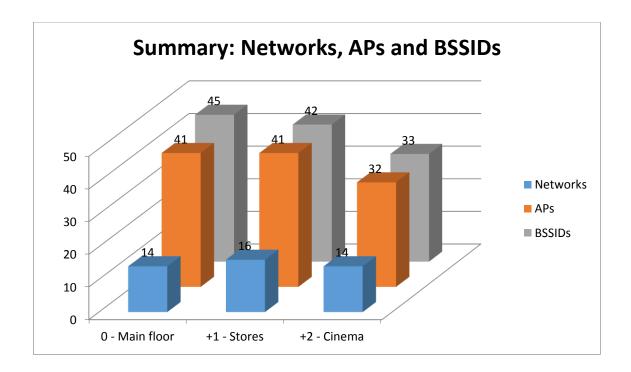
1.1. WIRELESS NETWORK SURVEY INFORMATION

This section contains general information regarding the wireless environment analysis using Acrylic WiFi Heatmaps.

Project Name	Demo Project 1
Client	As Cancelas
Description	Shopping center site survey
Data	11/06/2015
Selected Locations	3
Selected Scans	7
Selected Stations	29

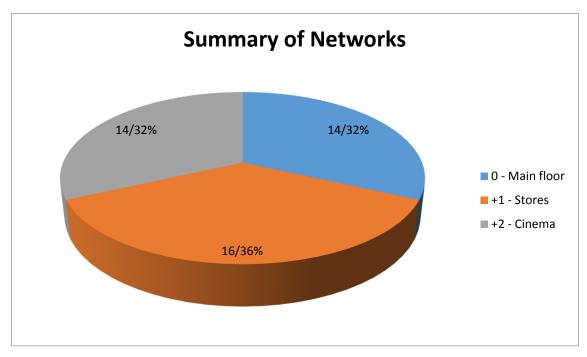
1.2. SUMMARY OF DETECTED NETWORKS

The following table summarizes Networks, MAC addresses and physical APs grating network accesses at different locations:

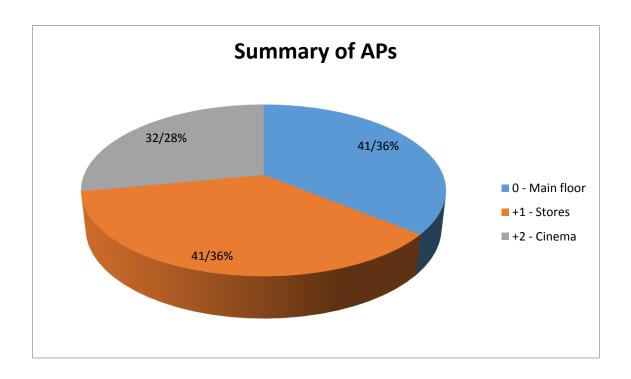

- Location: Physical area where monitoring takes place.
- Networks: Number of Networks detected.
- Access Points (APs): Number of physical access points.
- BSSIDs: Access points (MAC addresses) granting network access.

The number of BSSIDs can exceed the number of physical APs because a single AP can propagate more than one network by using different MAC addresses.

LOCATION	NETWORKS	APs	BSSIDs
0 - Main floor	14	41	45
+1 - Stores	16	41	42
+2 - Cinema	14	32	33
Total	17	45	49

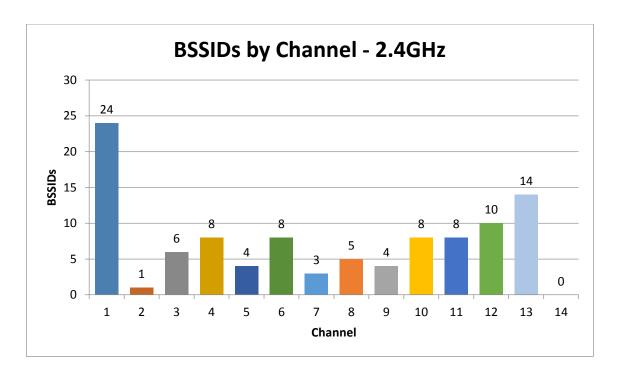


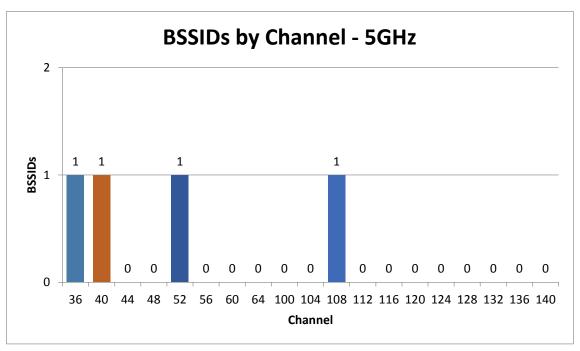
The following graph shows a comparison between the number of networks, physical APs and BSSIDs at each location.

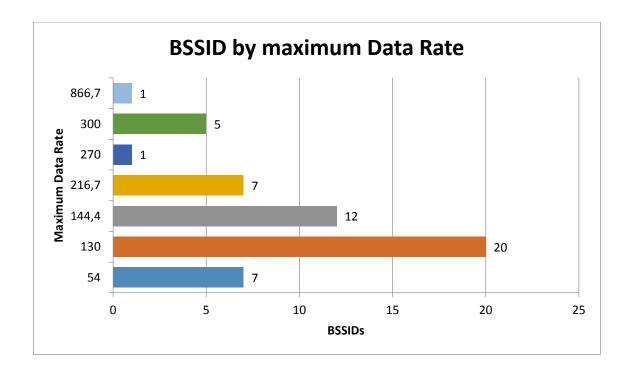


The following graph shows the total number and the percentage of networks detected at each location.

The following graph shows the total number and the percentage of physical APs detected at each location.




The following graph shows the total number and the percentage of BSSIDs detected at each location.


The following two graphs show the number of BSSIDs detected at each Channel, in the 2.4GHz bandwidth and in the 5GHz bandwith respectively.

The following graph shows the number of BSSIDs detected, ordered by maximum Data Rate registered value.

2. NETWORKS

The following table contains relevant information about all the networks detected during the survey:

- SSID: Network identifier offered by the BSSID.
- BSSID: Unique device identifier (Basic Service Set Identifier)
- Channel: Identifier of the frequency on which the network is operating.
- Frequency: Value of frequency in which the network channel is operating, expressed in Mhz.
- Average RSSI: Average Signal Strength detected on each device during the survey.
- Maximum RSSI: Maximum Signal Strength detected on each device during the survey.
- Minimum RSSI: Minimum Signal Strength detected on each device during the survey.
- Security: Types of authentication and encryption supported by the network.
- WPS: Wi-Fi Protected Setup version supported by the network.

	SSID	BSSID	CHAN	FREQ	RSSI AVG	RSSI MAX	RSSI MIN	SECURITY	WPS
		04:BD:88:F0:7E:A0	6	2437	-71	-69	-74	Open	
		04:BD:88:F0:A1:E0	1	2412	-60	-32	-95	Open	
		04:BD:88:F0:D2:C0	1	2412	-66	-47	-82	Open	
		04:BD:88:F0:E1:00	1	2412	-66	-47	-84	Open	
		04:BD:88:F0:E1:80	6	2437	-59	-35	-95	Open	
		04:BD:88:F1:02:80	1	2412	-74	-67	-80	Open	
		04:BD:88:F1:03:A0	1	2412	-62	-30	-81	Open	
		24:DE:C6:81:0B:B2	8	2447	-74	-36	-95	Open	
		24:DE:C6:81:0B:E2	5	2432	-68	-36	-95	Open	
	AsCancelas	24:DE:C6:81:0B:F2	1	2412	-68	-35	-95	Open	
		24:DE:C6:81:0C:32	12	2467	-67	-39	-95	Open	
1		24:DE:C6:81:0C:72	4	2427	-69	-29	-95	Open	
-		24:DE:C6:81:0C:82	13	2472	-69	-27	-95	Open	
		24:DE:C6:81:0E:02	9	2452	-62	-28	-95	Open	
		24:DE:C6:81:0E:52	1	2412	-70	-32	-95	Open	
		24:DE:C6:81:0E:B2	12	2467	-70	-27	-95	Open	
		24:DE:C6:81:0F:02	13	2472	-70	-20	-95	Open	
		24:DE:C6:81:0F:A2	10	2457	-69	-33	-95	Open	
		24:DE:C6:81:11:62	10	2457	-68	-29	-95	Open	
		24:DE:C6:81:12:12	13	2472	-69	-39	-95	Open	
		24:DE:C6:81:15:02	13	2472	-69	-32	-95	Open	
		24:DE:C6:81:1C:32	12	2467	-67	-36	-95	Open	
		24:DE:C6:81:58:12	10	2457	-76	-56	-95	Open	
		24:DE:C6:91:AE:52	11	2462	-80	-67	-95	Open	

3. Access Points

This section shows information about the physical access points detected during a survey, grouping all BSSIDs that are managed by the same physical device, as well as the number of clients connected to each one of them during the survey.

For each physical access point, its manufacturer is shown, as well as all its managed networks.

For each physical access point:

- BSSID: Associated MAC addresses granting network access.
- SSID: Network identifier offered by the BSSID.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- Clients: Number of connected clients (if monitoring is performed on Monitor Mode or Airpcap)

04:BD:88:F0:7E:A- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F0:7E:A0	AsCancelas	6	2437

04:BD:88:F0:A1:E- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F0:A1:E0	AsCancelas	1	2412

04:BD:88:F0:D2:C- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F0:D2:C0	AsCancelas	1	2412

04:BD:88:F0:E1:0- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F0:E1:00	AsCancelas	1	2412

04:BD:88:F0:E1:8- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F0:E1:80	AsCancelas	6	2437

04:BD:88:F1:02:8- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F1:02:80	AsCancelas	1	2412

04:BD:88:F1:03:A- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
04:BD:88:F1:03:A0	AsCancelas	1	2412

24:DE:C6:81:0B:B-/ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0B:B2	AsCancelas	8	2447

24:DE:C6:81:0B:E- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0B:E2	AsCancelas	5	2432

24:DE:C6:81:0B:F- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0B:F2	AsCancelas	1	2412

24:DE:C6:81:0C:3- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0C:32	AsCancelas	12	2467

24:DE:C6:81:0C:7- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0C:72	AsCancelas	4	2427

24:DE:C6:81:0C:8- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0C:82	AsCancelas	13	2472

24:DE:C6:81:0E:0- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0E:02	AsCancelas	9	2452

24:DE:C6:81:0E:5- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0E:52	AsCancelas	1	2412

24:DE:C6:81:0E:B- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0E:B2	AsCancelas	12	2467

24:DE:C6:81:0F:0- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0F:02	AsCancelas	13	2472

24:DE:C6:81:0F:A- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:0F:A2	AsCancelas	10	2457

24:DE:C6:81:11:6- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:11:62	AsCancelas	10	2457

24:DE:C6:81:12:1- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:12:12	AsCancelas	13	2472

24:DE:C6:81:15:0- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:15:02	AsCancelas	13	2472

24:DE:C6:81:1C:3-/ ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:1C:32	AsCancelas	12	2467

24:DE:C6:81:58:1- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:81:58:12	AsCancelas	10	2457

24:DE:C6:91:AE:5- / ARUBA NETWORKS

BSSID	SSID	CHANNEL	FREQ
24:DE:C6:91:AE:52	AsCancelas	11	2462

4. LOCATION SURVEY: 0 - MAIN FLOOR

4.1. LOCATION DETAILS

Short data related to the **0** - Main floor Location

Location Name	0 - Main floor
Description	Supermarket and Mall
Selected Scans at this Location	First scan at main floor
	Scan passive + active survey
Location	Scan passive + active survey 2

Blueprint for the location 0 - Main floor



4.1.1. SURVEY ROUTE

The following image shows the path followed at the **0** - **Main floor** location during the site survey, which indicates all locations where data was collected to be later analyzed.

4.1.1.1. FIRST SCAN AT MAIN FLOOR

Survey Route for 0 - Main floor Location - First scan at main floor

4.1.1.2. SCAN PASSIVE + ACTIVE SURVEY

Survey Route for 0 - Main floor Location - Scan passive + active survey

4.1.1.3. SCAN PASSIVE + ACTIVE SURVEY 2

Survey Route for 0 - Main floor Location - Scan passive + active survey 2

4.1.2. "0 - MAIN FLOOR" ACCESS POINT POSITION

The following image shows the approximate positions within the **0** - **Main floor** location of all access points identified during the site survey. These positions are manually configured, or otherwise are automatically estimated based on the measured data.

Physical APs Position for 0 - Main floor Location

	BSSID	SSID	Vendor	CHAN
1	24:DE:C6:81:0E:02	AsCancelas	Aruba Networks	9
2	24:DE:C6:81:0E:52	AsCancelas	Aruba Networks	1
3	24:DE:C6:81:0E:B2	AsCancelas	Aruba Networks	12
4	24:DE:C6:81:0F:A2	AsCancelas	Aruba Networks	10
5	04:BD:88:F1:03:A0	AsCancelas	Aruba Networks	1
6	04:BD:88:F1:02:80	AsCancelas	Aruba Networks	1
7	04:BD:88:F0:E1:80	AsCancelas	Aruba Networks	6
8	04:BD:88:F0:7E:A0	AsCancelas	Aruba Networks	6

4.2. NETWORK SURVEY: ASCANCELAS

4.2.1. NETWORK DETAILS

4.2.1.1. AP-BASED INFORMATION

The following table contains information related to the **AsCancelas** network, which is organized based on its APs:

- SSID: Network identifier offered by the BSSID.
- BSSID: Associated MAC addresses granting network access.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- Security: Types of authentication and encryption supported by the network.
- Vendor: Device manufacturer.

	SSID	AsCancelas			
	BSSID	CHANNEL	FREQ	SECURITY	VENDOR
1	04:BD:88:F0:7E:A0	6	2437	Open	Aruba Networks
2	04:BD:88:F0:D2:C0	1	2412	Open	Aruba Networks
3	04:BD:88:F0:E1:00	1	2412	Open	Aruba Networks
4	04:BD:88:F0:E1:80	6	2437	Open	Aruba Networks
5	04:BD:88:F1:02:80	1	2412	Open	Aruba Networks
6	04:BD:88:F1:03:A0	1	2412	Open	Aruba Networks
7	24:DE:C6:81:0B:B2	8	2447	Open	Aruba Networks
8	24:DE:C6:81:0B:E2	5	2432	Open	Aruba Networks
9	24:DE:C6:81:0B:F2	1	2412	Open	Aruba Networks
10	24:DE:C6:81:0C:32	12	2467	Open	Aruba Networks
11	24:DE:C6:81:0C:72	4	2427	Open	Aruba Networks
12	24:DE:C6:81:0C:82	13	2472	Open	Aruba Networks
13	24:DE:C6:81:0E:02	9	2452	Open	Aruba Networks
14	24:DE:C6:81:0E:52	1	2412	Open	Aruba Networks
15	24:DE:C6:81:0E:B2	12	2467	Open	Aruba Networks
16	24:DE:C6:81:0F:02	13	2472	Open	Aruba Networks
17	24:DE:C6:81:0F:A2	10	2457	Open	Aruba Networks
18	24:DE:C6:81:11:62	10	2457	Open	Aruba Networks
19	24:DE:C6:81:12:12	13	2472	Open	Aruba Networks
20	24:DE:C6:81:15:02	13	2472	Open	Aruba Networks
21	24:DE:C6:81:1C:32	12	2467	Open	Aruba Networks
22	24:DE:C6:81:58:12	10	2457	Open	Aruba Networks
23	24:DE:C6:91:AE:52	11	2462	Open	Aruba Networks

4.2.1.2. CHANNEL-BASED INFORMATION

The following table contains **AsCancelas** network related information, which is organized based on the transmitting channels/frequencies:

- SSID: Network identifier offered by the BSSID.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- BSSID: Associated MAC addresses granting network access.
- Vendor: Device manufacturer.

SSID		AsCanc	ELAS
CHANNEL	FREQUENCY	BSSID	Vendor
		24:DE:C6:81:0B:F2	Aruba Networks
		24:DE:C6:81:0E:52	Aruba Networks
		04:BD:88:F0:D2:C0	Aruba Networks
1	2412	04:BD:88:F0:E1:00	Aruba Networks
1		04:BD:88:F1:02:80	Aruba Networks
		04:BD:88:F1:03:A0	Aruba Networks
		24:DE:C6:81:15:02	Aruba Networks
		24:DE:C6:81:0C:82	Aruba Networks
		24:DE:C6:81:0C:32	Aruba Networks
		24:DE:C6:81:0C:82	Aruba Networks
3	2422	24:DE:C6:81:0E:52	Aruba Networks
3	2722	24:DE:C6:81:0F:A2	Aruba Networks
		24:DE:C6:81:12:12	Aruba Networks
		24:DE:C6:81:0F:02	Aruba Networks
	2427	24:DE:C6:81:0C:72	Aruba Networks
4		24:DE:C6:81:0F:02	Aruba Networks
_		24:DE:C6:81:11:62	Aruba Networks
		24:DE:C6:81:15:02	Aruba Networks
5	2432	24:DE:C6:81:0B:E2	Aruba Networks
	2437	04:BD:88:F0:E1:80	Aruba Networks
6		24:DE:C6:91:AE:52	Aruba Networks
		04:BD:88:F0:7E:A0	Aruba Networks
8	2447	24:DE:C6:81:0B:B2	Aruba Networks
	2452 2457	24:DE:C6:81:0E:02	Aruba Networks
9		24:DE:C6:81:0B:B2	Aruba Networks
		24:DE:C6:81:0C:72	Aruba Networks
		24:DE:C6:81:0F:A2	Aruba Networks
10		24:DE:C6:81:11:62	Aruba Networks
		24:DE:C6:81:58:12	Aruba Networks

SSID	AsCancelas		
CHANNEL	FREQUENCY	BSSID	Vendor
		24:DE:C6:81:0B:B2	Aruba Networks
11	2462	24:DE:C6:91:AE:52	Aruba Networks
	2467	24:DE:C6:81:0C:32	Aruba Networks
		24:DE:C6:81:0E:B2	Aruba Networks
12		24:DE:C6:81:1C:32	Aruba Networks
12		24:DE:C6:81:0B:F2	Aruba Networks
		24:DE:C6:81:0E:02	Aruba Networks
		24:DE:C6:81:58:12	Aruba Networks
	2472	24:DE:C6:81:0C:82	Aruba Networks
		24:DE:C6:81:0F:02	Aruba Networks
		24:DE:C6:81:12:12	Aruba Networks
		24:DE:C6:81:15:02	Aruba Networks
		24:DE:C6:81:0B:E2	Aruba Networks
13		24:DE:C6:81:0C:72	Aruba Networks
		24:DE:C6:81:0E:B2	Aruba Networks
		24:DE:C6:81:0E:02	Aruba Networks
		24:DE:C6:81:11:62	Aruba Networks
		24:DE:C6:81:58:12	Aruba Networks
		24:DE:C6:91:AE:52	Aruba Networks

4.2.1.3. "ASCANCELAS" ACCESS POINT POSITION

The following image shows the approximate positions of all access points identified during the site survey which are publishing the network **AsCancelas.** These positions are manually configured, or otherwise are automatically estimated based on the measured data.

Physical APs Position for AsCancelas Network

	BSSID	SSID	Vendor	CHAN
1	24:DE:C6:81:0E:02	AsCancelas	Aruba Networks	9
2	24:DE:C6:81:0E:52	AsCancelas	Aruba Networks	1
3	24:DE:C6:81:0E:B2	AsCancelas	Aruba Networks	12
4	24:DE:C6:81:0F:A2	AsCancelas	Aruba Networks	10
5	04:BD:88:F1:03:A0	AsCancelas	Aruba Networks	1
6	04:BD:88:F1:02:80	AsCancelas	Aruba Networks	1
7	04:BD:88:F0:E1:80	AsCancelas	Aruba Networks	6
8	04:BD:88:F0:7E:A0	AsCancelas	Aruba Networks	6


4.2.2. WIFI QUALITY

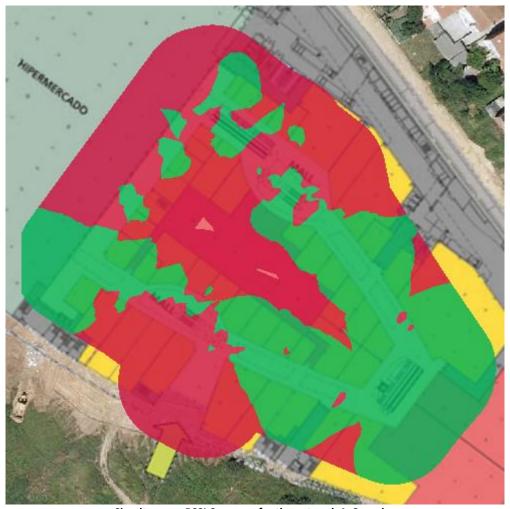
4.2.2.1. WEB BROWSING WIFI REQUIREMENTS

4.2.2.1.1. RSSI COVERAGE

The Rssi Coverage control displays those areas where the signal strength received from any of the selected access points falls below the selected threshold value. Signal strength has a significant impact on the quality of communications. Signal strength is measured in dBm, and ranges from 0 dBm (stronger) to -100 dBm (weaker).

Acceptable values range from 0 to -75 dBm. Proper communication cannot be guaranteed with lower signal strength values.

RSSI Coverage for the network AsCancelas


Pass	RSSI Required greater than or equal -65 dBm
Fail	

4.2.2.1.2. SIMULTANEOUS RSSI COVERAGE

The Simultaneous AP Coverage control displays those areas where signal strength received by any of the network access points is equal or lower than the predetermined threshold value.

To ensure dependable wireless communications, it is necessary, under certain circumstances, that all the points in the coverage area can access a certain number of access points within the network infrastructure, preventing channel overlapping, with at least a minimum signal strength.

Simultaneous RSSI Coverage for the network AsCancelas

Pass	RSSI Required greater than or equal -65 dBm
	Simultaneous APs Required greater than or equal 2 APs
Fail	

4.2.2.1.3. CHANNEL OVERLAP

The Channel Overlapping control shows those areas where adjacent interference requirements are met.

An AP is considered to have an adjacent interference when some of its transmitted frequencies overlap with another AP transmitting on a different channel over the same band.

Channel Overlap for the network AsCancelas

Pass	AP Overlap less than or equal 0 APs	
	Gap RSSI greater than or equal 20 dBm	
Fail		

4.2.2.1.4. CO-CHANNEL INTERFERENCE

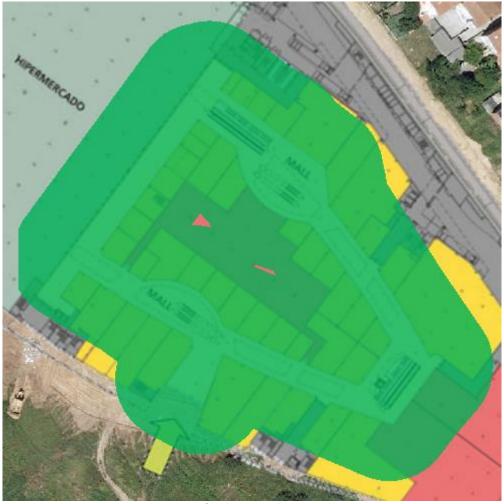
This control displays those areas where co-channel interference parameters are met.

An AP is considered to have a co-channel interference when there is another AP transmitting on the same channel.

As a consequence of channel overlap, access points occupy the same radio spectrum, sharing it and using it alternately, so only one AP will be transmitting at a time.

This kind of interferences worsen communications performance because it is necessary to analyse wireless space before transmitting. If one AP is transmitting, others must wait for this to stop before they can transmit. This makes total transmission time to be divided into the number of APs that transmit in the same frequency.

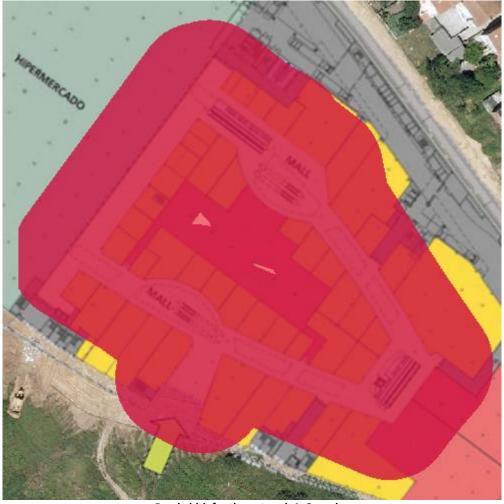
Co-Channel Interference for the network AsCancelas


Pass	Overlapping APs less than or equal 1 APs
	Gap RSSI greater than or equal 20 dBm
Fail	

4.2.2.1.5. LATENCY

Latency is the time interval between sending a data packet and receiving it back, in this case, latency is the amount of time a packet takes to be transmitted and received back in the wireless space.

Acceptable latency values range from 1-10ms.


Latency for the network AsCancelas

Pass	Network Latency less than or equal 100ms
Fail	

4.2.2.1.6. BANDWIDTH

The Bandwidth control ensures that minimum bandwidth quality requirements for the connection established by the active survey are met throughout the coverage area.

Bandwidth for the network AsCancelas

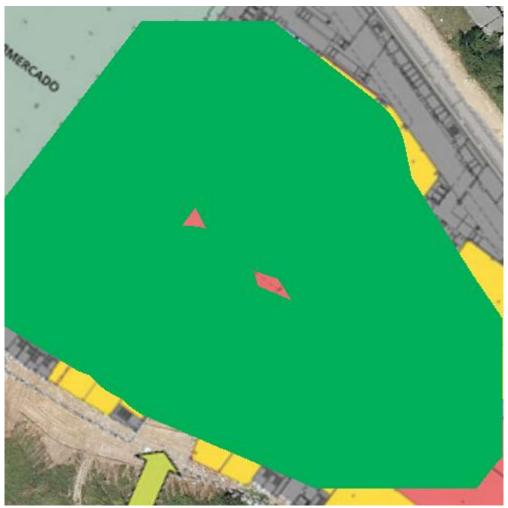
Pass Bandwidth greater than or equal 320 kbps
Fail

4.2.2.1.7. PACKET LOST

The packet loss rate is the percentage of packets that are lost, in other words, that do not reach their destination at the time of establishing communication, and that are (usually) retransmitted. Packet loss has a negative impact on network performance. When a packet does not reach its destination, packet retransmission is usually requested by the recipient to keep communication flowing normally.

Packet loss rates of under 10% are acceptable and will have a negligible impact on network performance in most cases.

Packet Lost for the network AsCancelas


Pass	Ratio Lost less than or equal 25%
Fail	

4.2.2.1.8. ACCESS POINT ROAMING

The Roaming control shows those areas where Roaming is required by extending network coverage through many different access points. In a wireless infrastructure, multiple access points are deployed to provide coverage throughout the desired area.

Roaming allows moving devices to maintain wireless communication by connecting to new access points within the same network to maintain the quality of communication and prevent degradation of signal strength. This service is called Roaming

Access Point Roaming for the network AsCancelas

Pass Fail

4.2.2.2. VOIP OVER WIFI REQUIREMENTS

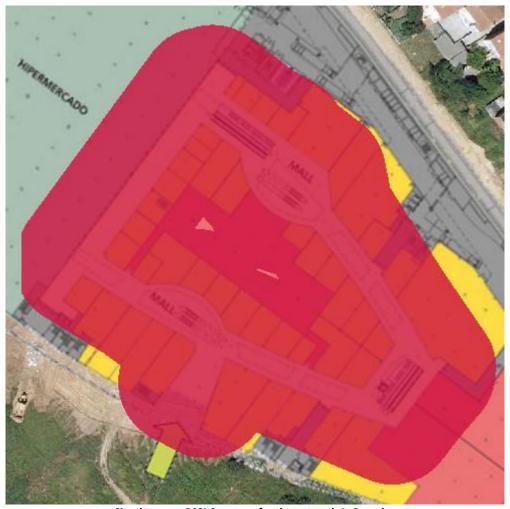
4.2.2.2.1. RSSI COVERAGE

The Rssi Coverage control displays those areas where the signal strength received from any of the selected access points falls below the selected threshold value. Signal strength has a significant impact on the quality of communications. Signal strength is measured in dBm, and ranges from 0 dBm (stronger) to -100 dBm (weaker).

Acceptable values range from 0 to -75 dBm. Proper communication cannot be guaranteed with lower signal strength values.

RSSI Coverage for the network AsCancelas

Pass	RSSI Required greater than or equal -50 dBm
Fail	



4.2.2.2. SIMULTANEOUS RSSI COVERAGE

The Simultaneous AP Coverage control displays those areas where signal strength received by any of the network access points is equal or lower than the predetermined threshold value.

To ensure dependable wireless communications, it is necessary under certain circumstances, that

To ensure dependable wireless communications, it is necessary, under certain circumstances, that all the points in the coverage area can access a certain number of access points within the network infrastructure, preventing channel overlapping, with at least a minimum signal strength.

Simultaneous RSSI Coverage for the network AsCancelas

Pass	RSSI Required greater than or equal -45 dBm
	Simultaneous APs Required greater than or equal 5 APs
Fail	

4.2.2.3. CHANNEL OVERLAP

The Channel Overlapping control shows those areas where adjacent interference requirements are met.

An AP is considered to have an adjacent interference when some of its transmitted frequencies overlap with another AP transmitting on a different channel over the same band.

Channel Overlap for the network AsCancelas

Dans	AP Overlap less than or equal 0 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	

4.2.2.2.4. CO-CHANNEL INTERFERENCE

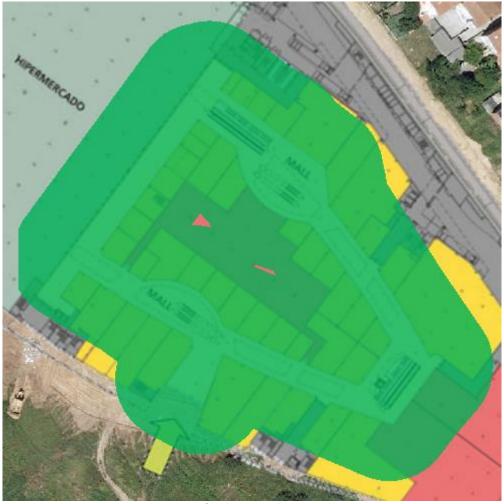
This control displays those areas where co-channel interference parameters are met.

An AP is considered to have a co-channel interference when there is another AP transmitting on the same channel.

As a consequence of channel overlap, access points occupy the same radio spectrum, sharing it and using it alternately, so only one AP will be transmitting at a time.

This kind of interferences worsen communications performance because it is necessary to analyse wireless space before transmitting. If one AP is transmitting, others must wait for this to stop before they can transmit. This makes total transmission time to be divided into the number of APs that transmit in the same frequency.

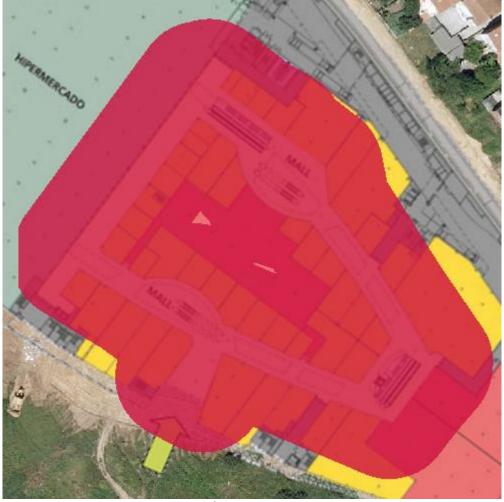
Co-Channel Interference for the network AsCancelas


Pass	Overlapping APs less than or equal 1 APs
	Gap RSSI greater than or equal 20 dBm
Fail	

4.2.2.2.5. LATENCY

Latency is the time interval between sending a data packet and receiving it back, in this case, latency is the amount of time a packet takes to be transmitted and received back in the wireless space.

Acceptable latency values range from 1-10ms.


Latency for the network AsCancelas

Pass	Network Latency less than or equal 256ms
Fail	

4.2.2.2.6. BANDWIDTH

The Bandwidth control ensures that minimum bandwidth quality requirements for the connection established by the active survey are met throughout the coverage area.

Bandwidth for the network AsCancelas

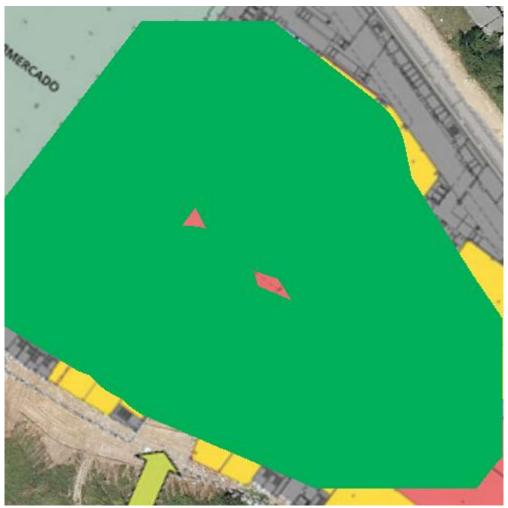
Pass Bandwidth greater than or equal 5000 kbps
Fail

4.2.2.2.7. PACKET LOST

The packet loss rate is the percentage of packets that are lost, in other words, that do not reach their destination at the time of establishing communication, and that are (usually) retransmitted. Packet loss has a negative impact on network performance. When a packet does not reach its destination, packet retransmission is usually requested by the recipient to keep communication flowing normally.

Packet loss rates of under 10% are acceptable and will have a negligible impact on network performance in most cases.

Packet Lost for the network AsCancelas

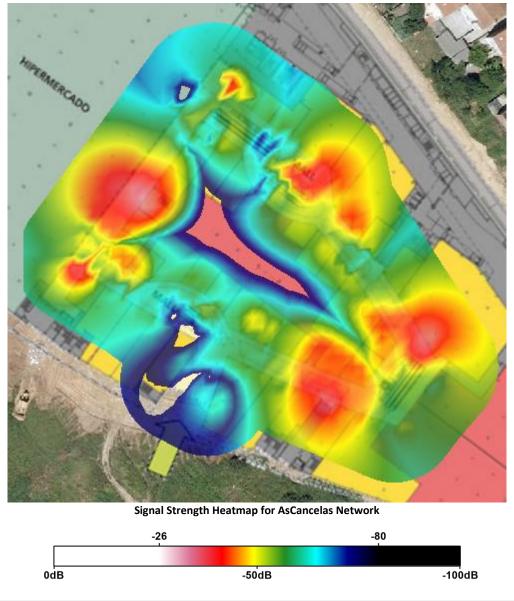

Pass	Ratio Lost less than or equal 25%
Fail	

4.2.2.2.8. ACCESS POINT ROAMING

The Roaming control shows those areas where Roaming is required by extending network coverage through many different access points. In a wireless infrastructure, multiple access points are deployed to provide coverage throughout the desired area.

Roaming allows moving devices to maintain wireless communication by connecting to new access points within the same network to maintain the quality of communication and prevent degradation of signal strength. This service is called Roaming

Access Point Roaming for the network AsCancelas


Pass Fail

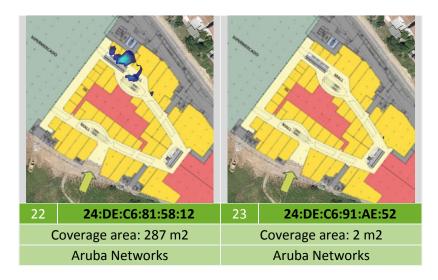
4.2.3. SURVEY 4.2.3.1. RSSI HEATMAP

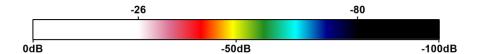
Signal Strength translates as how efficiently the network is reaching the surveyed area, indicating how the **AsCancelas** network is received at each location.

Signal strength values range from 0 db to -100db, being -100db the worse performance. The color scheme is shown below the image.

4.2.3.2. RSSI DETAILED BY AP

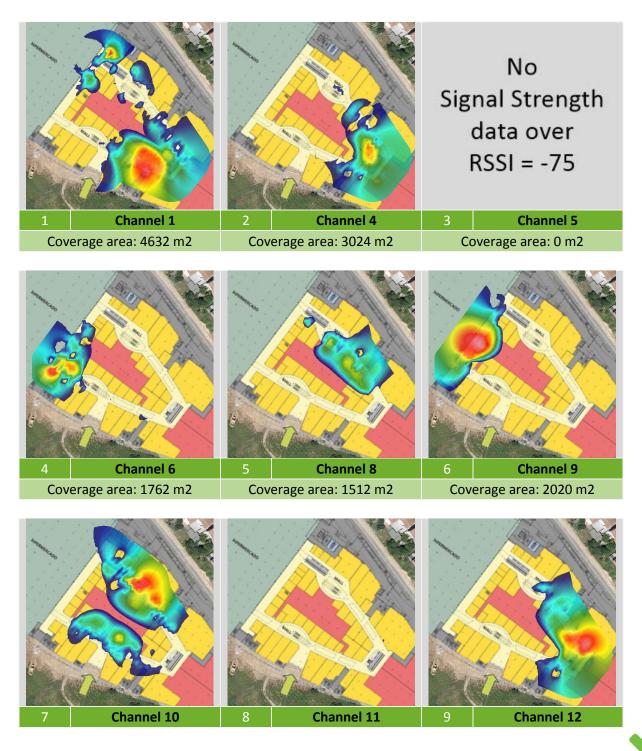
The following table contains a tile view of all BSSIDs associated to the **AsCancelas** network, along with its signal strength heatmap, associated covered area, and device manufacturer.



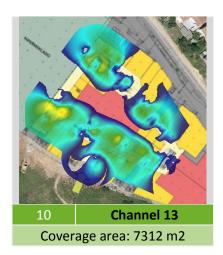


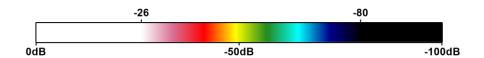
Coverage area: 1751 m2	Coverage area: 0 m2	Coverage area: 2267 m2			
Aruba Networks	Aruba Networks	Aruba Networks			
No Signal Strength data over RSSI = -75					
10 24:DE:C6:81:0C:32	11 24:DE:C6:81:0C:72	12 24:DE:C6:81:0C:82			
Coverage area: 0 m2	Coverage area: 2165 m2	Coverage area: 2768 m2			
Aruba Networks	Aruba Networks	Aruba Networks			
13 24:DE:C6:81:0E:02	14 24:DE:C6:81:0E:52	15 24:DE:C6:81:0E:B2			
Coverage area: 1837 m2	Coverage area: 2704 m2	Coverage area: 3644 m2			
Coverage area: 1837 m2 Aruba Networks	Coverage area: 2704 m2 Aruba Networks	Coverage area: 3644 m2 Aruba Networks			
Coverage area: 1837 m2	Coverage area: 2704 m2	Coverage area: 3644 m2			

Aruba Networks	Aruba Networks	Aruba Networks			
		No Signal Strength data over RSSI = -75			
19 24:DE:C6:81:12:12	20 24:DE:C6:81:15:02	21 24:DE:C6:81:1C:32			
Coverage area: 1959 m2	Coverage area: 1440 m2	Coverage area: 0 m2			
Aruba Networks	Aruba Networks	Aruba Networks			



4.2.3.3. RSSI DETAILED BY CHANNEL


The following table contains a tile view of all operative channels on the **AsCancelas** network.


The graph shows the signal strength heatmap, and the coverage area associated with this network on that channel.

Coverage area: 3882 m2 Coverage area: 2 m2 Coverage area: 2804 m2

4.2.3.4. NUMBER OF APS

The following image shows the number of access points granting access to the **AsCancelas** network that were detected within the surveyed area.

The graph reveals the existing signal overlapping from the different access points granting access to the same network.

Number of APs for AsCancelas Network

Number of APs	1	2	3	4	5	6	7	8	9	10

4.2.3.5. AP COVERAGE

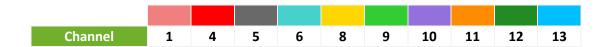
The following image shows the color coded coverage of every AP propagating the **AsCancelas** network.

If coverage from two or more channels overlap throughout the surveyed area, then the stronger signal channel is display.

Using this graph, you will be able to analyze the appropriate coverage distribution.

AP Coverage for AsCancelas Network

Access Point		Access Point		Access Point
04:BD:88:F0:7E:A0		04:BD:88:F0:D2:C0		04:BD:88:F0:E1:00
04:BD:88:F0:E1:80		04:BD:88:F1:02:80		04:BD:88:F1:03:A0
24:DE:C6:81:0B:B2		24:DE:C6:81:0B:E2		24:DE:C6:81:0B:F2
24:DE:C6:81:0C:32		24:DE:C6:81:0C:72		24:DE:C6:81:0C:82
24:DE:C6:81:0E:02		24:DE:C6:81:0E:52		24:DE:C6:81:0E:B2
24:DE:C6:81:0F:02		24:DE:C6:81:0F:A2		24:DE:C6:81:11:62
24:DE:C6:81:12:12		24:DE:C6:81:15:02		24:DE:C6:81:1C:32
24·DF·C6·81·58·12		24·DF·C6·91·ΔF·52		


4.2.3.6. CHANNEL COVERAGE

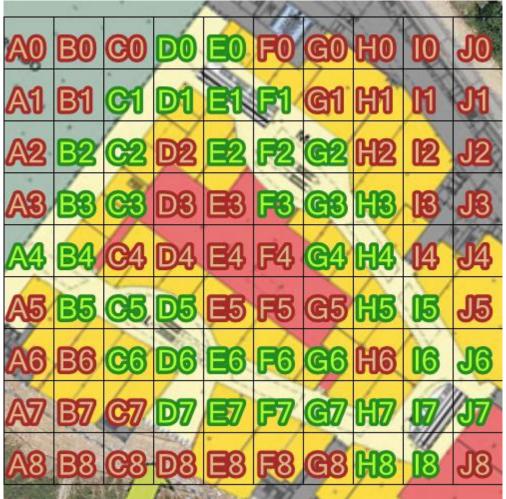
The following image shows the coverage range for every channel in the **AsCancelas** network.

If coverage from two or more channels overlap throughout the surveyed area, then the stronger signal channel is display.

Channel Coverage for AsCancelas Network.

4.2.3.7. CHANNEL OVERLAP

The following image shows the coverage area for each operative channel on the **AsCancelas** network, and the signal overlapping between two or more channels throughout the surveyed area.


Channel Overlap for AsCancelas Network

Channel	1	2	3	4	5	6	7	8	9	10

4.2.3.8. DETAILED GRID

In the following image, the blueprint associated to the surveyed area is divided into quadrants. Each quadrant shows the collected information in that grid.

Detailed Grid for AsCancelas Location

	SURVEY	BEST	Avg			DATA RATE
	POINTS	RSSI	RSSI	NETWORKS (SSIDS)	APs	(Max)
D0	13	-49	-73	AsCancelas	8	216,7
E0	13	-30	-68	AsCancelas	10	216,7
C1	12	-50	-68	AsCancelas	7	216,7
D1	30	-45	-69	AsCancelas	10	216,7
E1	22	-50	-71	AsCancelas	10	216,7
F1	20	-50	-73	AsCancelas	11	216,7
B2	5	-40	-54	AsCancelas	4	216,7
C2	32	-28	-63	AsCancelas	6	216,7
E2	5	-58	-69	AsCancelas	6	216,7
F2	25	-38	-70	AsCancelas	11	216,7
G2	19	-33	-69	AsCancelas	14	216,7
В3	39	-34	-60	AsCancelas	5	216,7
С3	2	-28	-53	AsCancelas	4	216,7
F3	11	-43	-65	AsCancelas	9	216,7
G3	30	-42	-68	AsCancelas	12	216,7
Н3	10	-38	-70	AsCancelas	10	216,7
A4	23	-35	-62	AsCancelas	10	216,7
B4	29	-39	-61	AsCancelas	8	216,7
G4	5	-49	-65	AsCancelas	8	216,7
H4	38	-41	-69	AsCancelas	13	216,7
B5	24	-41	-67	AsCancelas	11	216,7
C5	33	-49	-70	AsCancelas	12	216,7
D5	9	-51	-68	AsCancelas	7	216,7
H5	17	-45	-68	AsCancelas	11	216,7
15	27	-45	-70	AsCancelas	13	216,7
C6	7	-56	-72	AsCancelas	7	216,7
D6	25	-53	-76	AsCancelas	11	216,7
E6	28	-43	-71	AsCancelas	9	216,7
F6	12	-47	-68	AsCancelas	8	130
G6	1	-52	-59	AsCancelas	5	130
16	34	-37	-67	AsCancelas	11	130
J6	10	-27	-67	AsCancelas	10	130
D7	15	-57	-74	AsCancelas	5	130
E7	9	-55	-70	AsCancelas	9	216,7
F7	24	-45	-68	AsCancelas	11	216,7
G7	36	-32	-66	AsCancelas	9	216,7
H7	22	-39	-66	AsCancelas	11	216,7
17	15	-41	-63	AsCancelas	11	216,7

	SURVEY POINTS	BEST RSSI	Avg RSSI	NETWORKS (SSIDs)	APs	DATA RATE (MAX)
J7	21	-37	-68	AsCancelas	12	130
Н8	16	-38	-65	AsCancelas	11	216,7
18	19	-52	-68	AsCancelas	12	216,7

4.2.3.9. SNR HEATMAP

The following image shows the **AsCancelas** network's signal-to-noise ratio throughout the surveyed area.

Signal-to-noise ratio measures the ratio between the Wi-Fi network signal strength and the background noise. Higher noise levels will result in a larger negative impact on communications. This parameter offers valuable information on the effectiveness of communications. These values range from 0 to 100, being 100 the best possible communication quality.

The graph can't be generated due to the absence of the required data.

4.2.3.10. DATA RATE HEATMAP

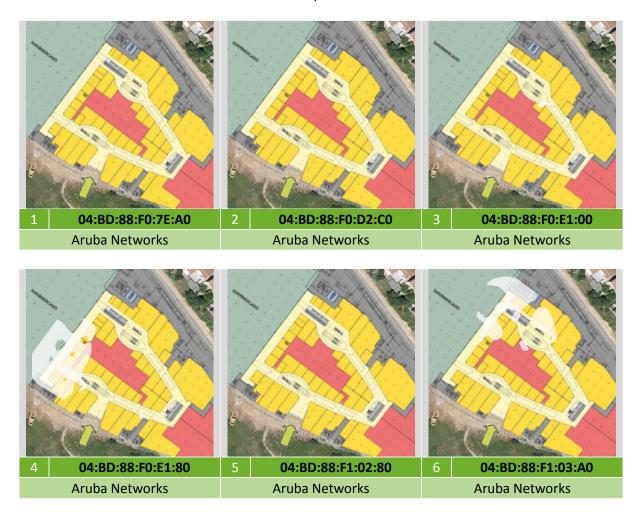
The following image shows the area covered by the APs based on their data transfer rates for the **AsCancelas** network throughout the surveyed area.

Data rate helps determine the maximum data transmission speed among the wireless devices connected to a Wi-Fi network.

This value allows you to establish how consistent a network is when transmitting data across the coverage area, and helps you find those areas where these values greatly differ or the network performance significantly decreases.

Data Rate for AsCancelas Network

Data Rate Data Rate Data Rate
54 130 216,7



4.2.3.11. DATA RATE DETAILED

The following table shows a tile view of all BSSIDs associated with the **AsCancelas** network, together with the graph indicating the covered area and the maximum supported data transfer rate speed.

Data rate helps determine the maximum data transmission speed between the wireless devices connected to a Wi-Fi network.

It allows you to determine how efficiently a network transmits data throughout a certain area, and if there are blind zones where reduced network performance is observed.

4.2.3.12. CELL DENSITY HEATMAP

The following image shows a heatmap revealing the distribution of all client devices connected to the APs propagating the **AsCancelas** network.

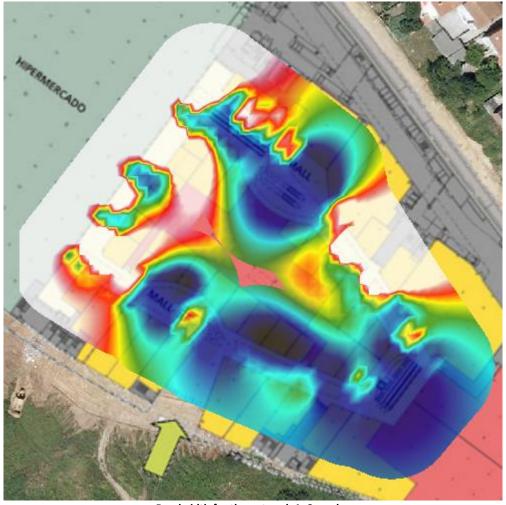
Cell density allows you to spot which zones have the higher number of client devices connected to the network by showing its saturation.

It provides useful information to allow for an even AP distribution according to actual usage.

The graph can't be generated due to the absence of the required data.

4.2.3.13. RETRIES RATE HEATMAP

In an ideal Wi-Fi communication, all sent data packets reach their destination. Otherwise, poor transmission, interferences or any other communication problems can cause the dropped packets to be retransmitted for a correct data transmission. The larger the number of retransmitted or forwarded packets, the larger the communication latency will be, resulting in a lower communication quality.

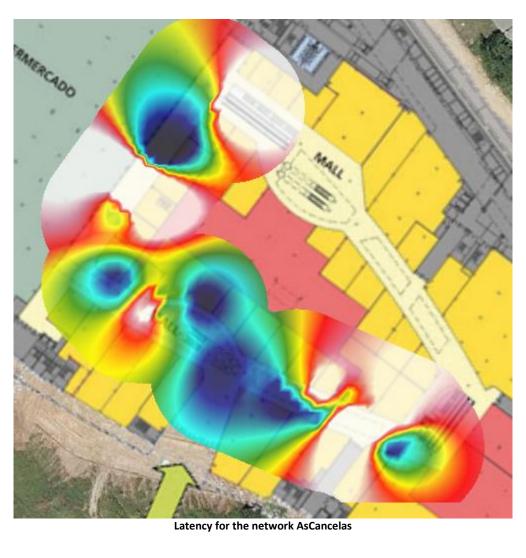

The graph can't be generated due to the absence of the required data.

BANDWIDTH

Bandwidth indicates the amount of data being transmitted through **AsCancelas** network for each area within the network site range.

Bandwidth is measured in kilobytes per seconds, KB/s (1MB/s=1000KB/s), where a higher value translates as a better network performance.

Bandwidth for the network AsCancelas



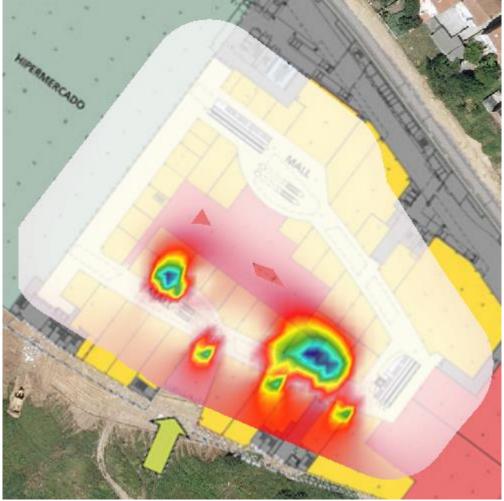
4.2.3.14. LATENCY

Latency indicates the time delay experienced in the data transfer through **AsCancelas** network for each area within the network site range.

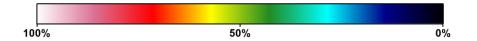
When a data packet is sent, it is received by a receiving device that notifies the transmitting device that the packet has been successfully received. Latency is the period from the time a data packet is sent to the time the packet reception confirmation is received. Latency is measured in milliseconds (ms).

The higher the latency, the lowest the network performance will be. High latency values negatively impact real-time application performance, such as video-conferencing and VoIP communications.

200ms 100ms 0ms



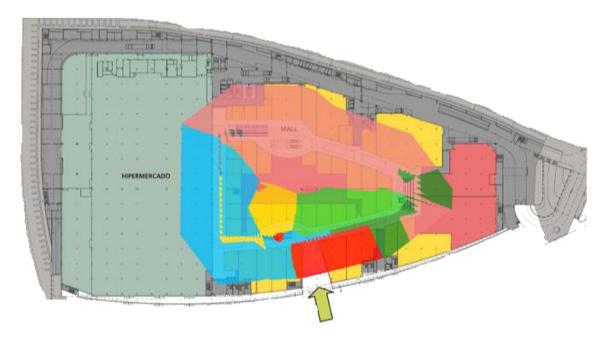
4.2.3.15. PACKET LOSS


In an ideal data communication, all sent data packets reach their destination; otherwise there is a packet loss that negatively impacts the data transmission performance, hence the overall network performance.

When a data packet is lost, if required by the protocol, it should be re-transmitted until a successful reception notification is received. This increases the amount of time necessary for a data unit to be transmitted, reducing the amount of data that can be transmitted per unit of time. The higher this value is, the lower the network performance will be.

The following image shows the areas where data packet loss is experienced within **AsCancelas** network site range.

Packet Loss for the network AsCancelas


4.2.3.16. ROAMING

Data roaming in a Wi-Fi network infrastructure is the ability of a client device to move around within a multiple access point network's coverage area without disconnections.

To ensure roaming in a multiple access point Wi-Fi network, access points' coverage ranges should overlap.

Accordingly, a moving client device will have continuous network coverage, and based on the device's internal settings and access point configuration, network access will be granted through the different access points across the coverage area.

The following image shows all **AsCancelas** network access points to which the device has been connected to while itinerating.

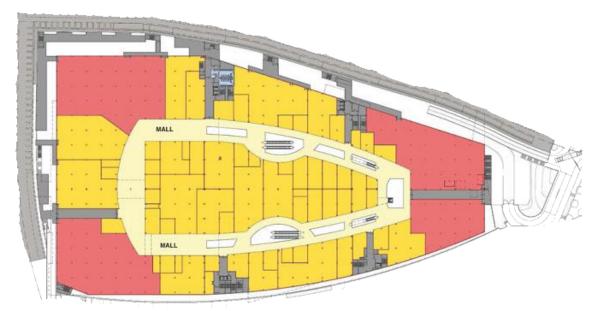
Roaming for the network AsCancelas

Access Point

04:BD:88:F0:E1:90 24:DE:C6:81:0C:82 24:DE:C6:81:0E:B2 **Access Point**

04:BD:88:F1:03:B0 24:DE:C6:81:0E:02 **Access Point**

24:DE:C6:81:0C:72 24:DE:C6:81:0E:52



5. LOCATION SURVEY: +1 - STORES

5.1. LOCATION DETAILS

Short data related to the +1 - Stores Location

Location Name	+1 - Stores
Description	
Selected Scans at this	Scan between stores
Location	Scan passive + active survey

Blueprint for the location +1 - Stores

5.1.1. SURVEY ROUTE

The following image shows the path followed at the **+1** - **Stores** location during the site survey, which indicates all locations where data was collected to be later analyzed.

5.1.1.1. SCAN BETWEEN STORES

Survey Route for +1 - Stores Location - Scan between stores

5.1.1.2. SCAN PASSIVE + ACTIVE SURVEY

Survey Route for +1 - Stores Location - Scan passive + active survey

5.1.2. "+1 - STORES" ACCESS POINT POSITION

The following image shows the approximate positions within the **+1** - **Stores** location of all access points identified during the site survey. These positions are manually configured, or otherwise are automatically estimated based on the measured data.

Physical APs Position for +1 - Stores Location

	BSSID	SSID	Vendor	CHAN
1	24:DE:C6:81:0B:B2	AsCancelas	Aruba Networks	8
2	24:DE:C6:81:0B:E2	AsCancelas	Aruba Networks	5
3	24:DE:C6:81:1C:32	AsCancelas	Aruba Networks	12
4	24:DE:C6:81:58:12	AsCancelas	Aruba Networks	10
5	24:DE:C6:81:12:12	AsCancelas	Aruba Networks	13
6	24:DE:C6:81:0C:82	AsCancelas	Aruba Networks	13
7	24:DE:C6:81:0C:72	AsCancelas	Aruba Networks	4
8	24:DE:C6:81:0F:02	AsCancelas	Aruba Networks	13
9	04:BD:88:F0:A1:E0	AsCancelas	Aruba Networks	1

5.2. NETWORK SURVEY: ASCANCELAS

5.2.1. NETWORK DETAILS

5.2.1.1. AP-BASED INFORMATION

The following table contains information related to the **AsCancelas** network, which is organized based on its APs:

- SSID: Network identifier offered by the BSSID.
- BSSID: Associated MAC addresses granting network access.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- Security: Types of authentication and encryption supported by the network.
- Vendor: Device manufacturer.

	SSID		AsCancelas		
	BSSID	CHANNEL	FREQ	SECURITY	VENDOR
1	04:BD:88:F0:7E:A0	6	2437	Open	Aruba Networks
2	04:BD:88:F0:A1:E0	1	2412	Open	Aruba Networks
3	04:BD:88:F0:D2:C0	1	2412	Open	Aruba Networks
4	04:BD:88:F0:E1:00	1	2412	Open	Aruba Networks
5	04:BD:88:F0:E1:80	6	2437	Open	Aruba Networks
6	04:BD:88:F1:02:80	11	2462	Open	Aruba Networks
7	04:BD:88:F1:03:A0	1	2412	Open	Aruba Networks
8	24:DE:C6:81:0B:B2	6	2437	Open	Aruba Networks
9	24:DE:C6:81:0B:E2	1	2412	Open	Aruba Networks
10	24:DE:C6:81:0B:F2	1	2412	Open	Aruba Networks
11	24:DE:C6:81:0C:32	12	2467	Open	Aruba Networks
12	24:DE:C6:81:0C:72	5	2432	Open	Aruba Networks
13	24:DE:C6:81:0C:82	4	2427	Open	Aruba Networks
14	24:DE:C6:81:0E:02	13	2472	Open	Aruba Networks
15	24:DE:C6:81:0E:52	1	2412	Open	Aruba Networks
16	24:DE:C6:81:0E:B2	13	2472	Open	Aruba Networks
17	24:DE:C6:81:0F:02	3	2422	Open	Aruba Networks
18	24:DE:C6:81:0F:A2	12	2467	Open	Aruba Networks
19	24:DE:C6:81:11:62	1	2412	Open	Aruba Networks
20	24:DE:C6:81:12:12	3	2422	Open	Aruba Networks
21	24:DE:C6:81:15:02	13	2472	Open	Aruba Networks
22	24:DE:C6:81:1C:32	5	2432	Open	Aruba Networks
23	24:DE:C6:81:58:12	13	2472	Open	Aruba Networks
24	24:DE:C6:91:AE:52	10	2457	Open	Aruba Networks

5.2.1.2. CHANNEL-BASED INFORMATION

The following table contains **AsCancelas** network related information, which is organized based on the transmitting channels/frequencies:

- SSID: Network identifier offered by the BSSID.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- BSSID: Associated MAC addresses granting network access.
- Vendor: Device manufacturer.

SSID	AsCancelas			
CHANNEL	FREQUENCY	BSSID	Vendor	
		24:DE:C6:81:0B:E2	Aruba Networks	
		24:DE:C6:81:0B:F2	Aruba Networks	
		24:DE:C6:81:0E:52	Aruba Networks	
		24:DE:C6:81:11:62	Aruba Networks	
		04:BD:88:F0:A1:E0	Aruba Networks	
1	2412	04:BD:88:F0:D2:C0	Aruba Networks	
		04:BD:88:F0:E1:00	Aruba Networks	
		04:BD:88:F1:03:A0	Aruba Networks	
		24:DE:C6:81:0C:32	Aruba Networks	
		24:DE:C6:81:0C:72	Aruba Networks	
		24:DE:C6:81:0E:B2	Aruba Networks	
3	2422	24:DE:C6:81:0F:02	Aruba Networks	
3	2422	24:DE:C6:81:12:12	Aruba Networks	
4	2427	24:DE:C6:81:0C:82	Aruba Networks	
5	2432	24:DE:C6:81:0C:72	Aruba Networks	
,		24:DE:C6:81:1C:32	Aruba Networks	
		24:DE:C6:81:0B:B2	Aruba Networks	
6	2437	04:BD:88:F0:7E:A0	Aruba Networks	
		04:BD:88:F0:E1:80	Aruba Networks	
7	2442	24:DE:C6:91:AE:52	Aruba Networks	
		24:DE:C6:91:AE:52	Aruba Networks	
10	2457	24:DE:C6:81:0B:B2	Aruba Networks	
10	2437	24:DE:C6:81:11:62	Aruba Networks	
		24:DE:C6:81:12:12	Aruba Networks	
11	2462	04:BD:88:F1:02:80	Aruba Networks	
		24:DE:C6:81:0C:32	Aruba Networks	
12	2467	24:DE:C6:81:0F:A2	Aruba Networks	
12		24:DE:C6:81:0B:F2	Aruba Networks	
		24:DE:C6:81:0C:82	Aruba Networks	

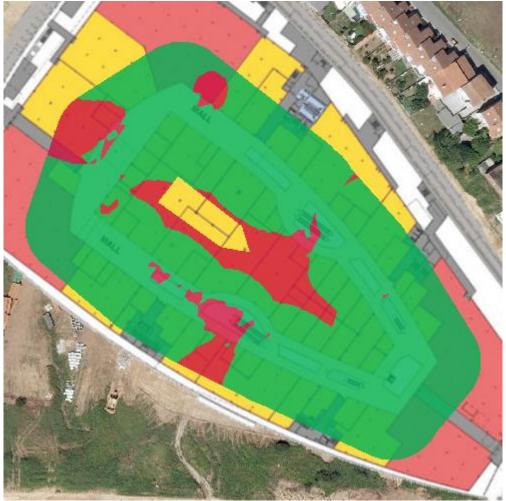
SSID	AsCancelas			
CHANNEL	FREQUENCY	BSSID	Vendor	
		24:DE:C6:81:0E:52	Aruba Networks	
		24:DE:C6:81:15:02	Aruba Networks	
		24:DE:C6:81:1C:32	Aruba Networks	
		24:DE:C6:81:58:12	Aruba Networks	
	2472	24:DE:C6:81:0E:02	Aruba Networks	
		24:DE:C6:81:0E:B2	Aruba Networks	
		24:DE:C6:81:15:02	Aruba Networks	
13		24:DE:C6:81:58:12	Aruba Networks	
		24:DE:C6:81:0B:E2	Aruba Networks	
		24:DE:C6:81:0F:02	Aruba Networks	
		24:DE:C6:81:0F:A2	Aruba Networks	

5.2.1.3. "ASCANCELAS" ACCESS POINT POSITION

The following image shows the approximate positions of all access points identified during the site survey which are publishing the network **AsCancelas.** These positions are manually configured, or otherwise are automatically estimated based on the measured data.

Physical APs Position for AsCancelas Network

	BSSID	SSID	Vendor	CHAN
1	24:DE:C6:81:0B:B2	AsCancelas	Aruba Networks	8
2	24:DE:C6:81:0B:E2	AsCancelas	Aruba Networks	5
3	24:DE:C6:81:1C:32	AsCancelas	Aruba Networks	12
4	24:DE:C6:81:58:12	AsCancelas	Aruba Networks	10
5	24:DE:C6:81:12:12	AsCancelas	Aruba Networks	13
6	24:DE:C6:81:0C:82	AsCancelas	Aruba Networks	13
7	24:DE:C6:81:0C:72	AsCancelas	Aruba Networks	4
8	24:DE:C6:81:0F:02	AsCancelas	Aruba Networks	13
9	04:BD:88:F0:A1:E0	AsCancelas	Aruba Networks	1


5.2.2. WIFI QUALITY

5.2.2.1. WEB BROWSING WIFI REQUIREMENTS

5.2.2.1.1. RSSI COVERAGE

The Rssi Coverage control displays those areas where the signal strength received from any of the selected access points falls below the selected threshold value. Signal strength has a significant impact on the quality of communications. Signal strength is measured in dBm, and ranges from 0 dBm (stronger) to -100 dBm (weaker).

Acceptable values range from 0 to -75 dBm. Proper communication cannot be guaranteed with lower signal strength values.

RSSI Coverage for the network AsCancelas

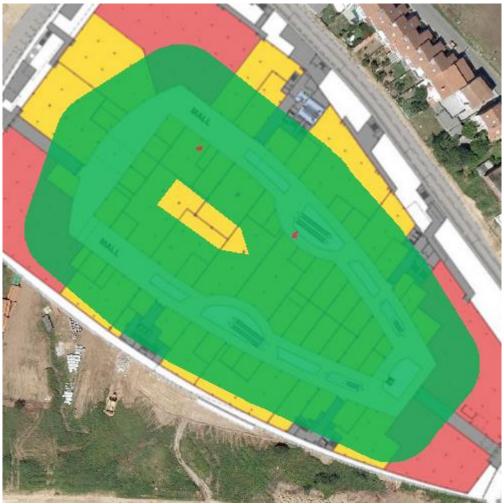
Pass	RSSI Required greater than or equal -65 dBm
Fail	

5.2.2.1.2. SIMULTANEOUS RSSI COVERAGE

The Simultaneous AP Coverage control displays those areas where signal strength received by any of the network access points is equal or lower than the predetermined threshold value.

To ensure dependable wireless communications, it is necessary, under certain circumstances, that all the points in the coverage area can access a certain number of access points within the network infrastructure, preventing channel overlapping, with at least a minimum signal strength.

Simultaneous RSSI Coverage for the network AsCancelas


Dage	RSSI Required greater than or equal -65 dBm
Pass	Simultaneous APs Required greater than or equal 2 APs
Fail	

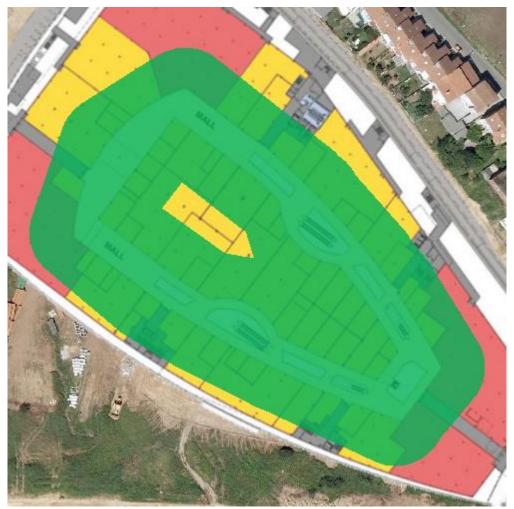
5.2.2.1.3. CHANNEL OVERLAP

The Channel Overlapping control shows those areas where adjacent interference requirements are met.

An AP is considered to have an adjacent interference when some of its transmitted frequencies overlap with another AP transmitting on a different channel over the same band.

Channel Overlap for the network AsCancelas

Dana	AP Overlap less than or equal 0 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	


5.2.2.1.4. CO-CHANNEL INTERFERENCE

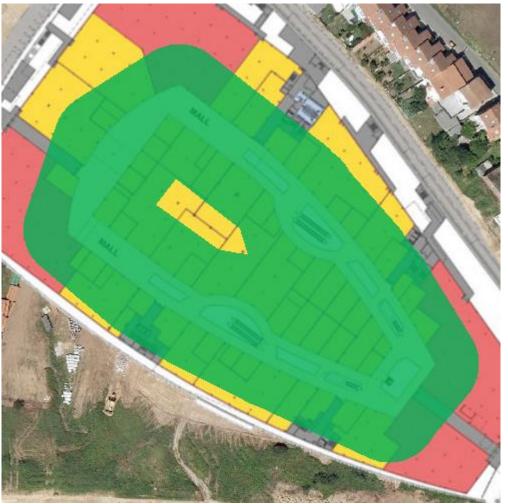
This control displays those areas where co-channel interference parameters are met.

An AP is considered to have a co-channel interference when there is another AP transmitting on the same channel.

As a consequence of channel overlap, access points occupy the same radio spectrum, sharing it and using it alternately, so only one AP will be transmitting at a time.

This kind of interferences worsen communications performance because it is necessary to analyse wireless space before transmitting. If one AP is transmitting, others must wait for this to stop before they can transmit. This makes total transmission time to be divided into the number of APs that transmit in the same frequency.

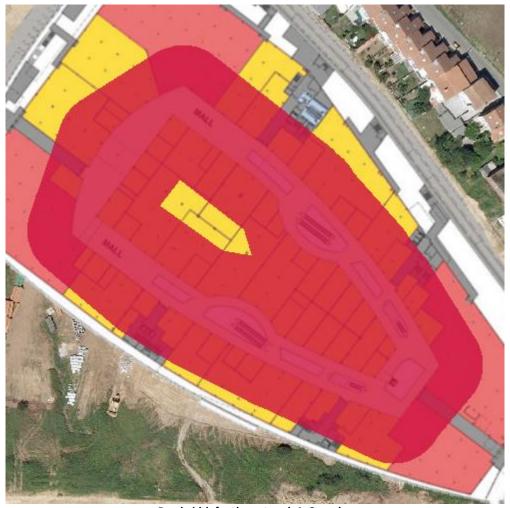
Co-Channel Interference for the network AsCancelas


Door	Overlapping APs less than or equal 1 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	

5.2.2.1.5. LATENCY

Latency is the time interval between sending a data packet and receiving it back, in this case, latency is the amount of time a packet takes to be transmitted and received back in the wireless space.

Acceptable latency values range from 1-10ms.

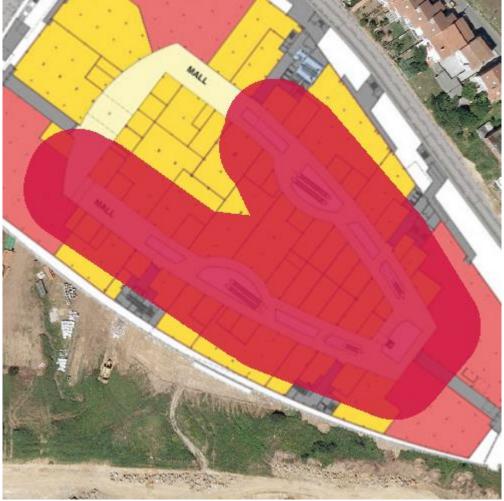

Latency for the network AsCancelas

Pass	Network Latency less than or equal 100ms
Fail	

5.2.2.1.6. BANDWIDTH

The Bandwidth control ensures that minimum bandwidth quality requirements for the connection established by the active survey are met throughout the coverage area.

Bandwidth for the network AsCancelas


Pass	Bandwidth greater than or equal 320 kbps
Fail	

5.2.2.1.7. PACKET LOST

The packet loss rate is the percentage of packets that are lost, in other words, that do not reach their destination at the time of establishing communication, and that are (usually) retransmitted. Packet loss has a negative impact on network performance. When a packet does not reach its destination, packet retransmission is usually requested by the recipient to keep communication flowing normally.

Packet loss rates of under 10% are acceptable and will have a negligible impact on network performance in most cases.

Packet Lost for the network AsCancelas

Pass	Ratio Lost less than or equal 25%
Fail	

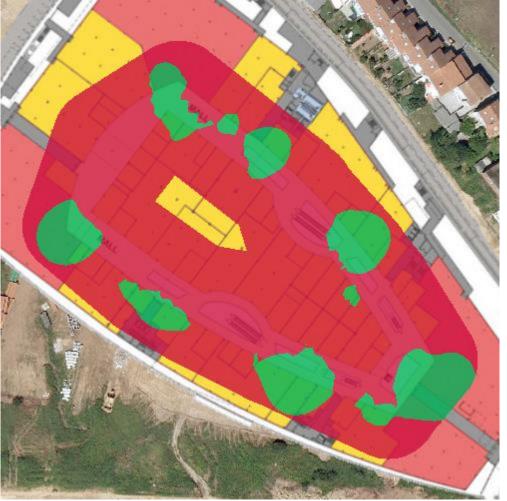
5.2.2.1.8. Access Point Roaming

The Roaming control shows those areas where Roaming is required by extending network coverage through many different access points. In a wireless infrastructure, multiple access points are deployed to provide coverage throughout the desired area.

Roaming allows moving devices to maintain wireless communication by connecting to new access points within the same network to maintain the quality of communication and prevent degradation of signal strength. This service is called Roaming

Access Point Roaming for the network AsCancelas

Pass Fail



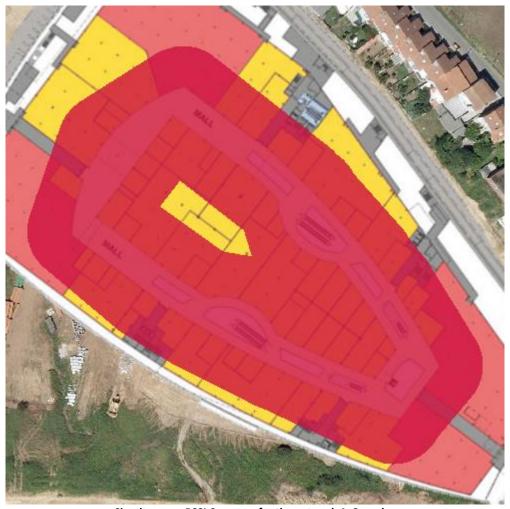
5.2.2.2. VOIP OVER WIFI REQUIREMENTS

5.2.2.1. RSSI COVERAGE

The Rssi Coverage control displays those areas where the signal strength received from any of the selected access points falls below the selected threshold value. Signal strength has a significant impact on the quality of communications. Signal strength is measured in dBm, and ranges from 0 dBm (stronger) to -100 dBm (weaker).

Acceptable values range from 0 to -75 dBm. Proper communication cannot be guaranteed with lower signal strength values.

RSSI Coverage for the network AsCancelas

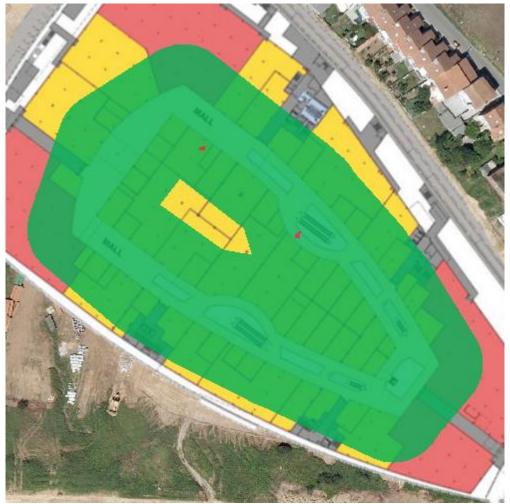

Pass	RSSI Required greater than or equal -50 dBm
Fail	

5.2.2.2. SIMULTANEOUS RSSI COVERAGE

The Simultaneous AP Coverage control displays those areas where signal strength received by any of the network access points is equal or lower than the predetermined threshold value.

To ensure dependable wireless communications, it is necessary, under certain circumstances, that all the points in the coverage area can access a certain number of access points within the network infrastructure, preventing channel overlapping, with at least a minimum signal strength.

Simultaneous RSSI Coverage for the network AsCancelas


Dage	RSSI Required greater than or equal -45 dBm
Pass	Simultaneous APs Required greater than or equal 5 APs
Fail	

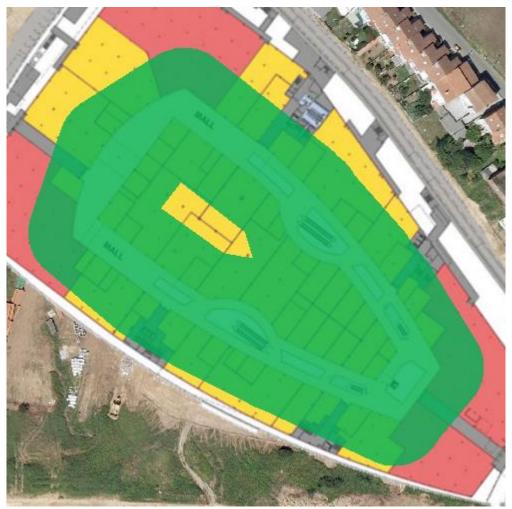
5.2.2.3. CHANNEL OVERLAP

The Channel Overlapping control shows those areas where adjacent interference requirements are met.

An AP is considered to have an adjacent interference when some of its transmitted frequencies overlap with another AP transmitting on a different channel over the same band.

Channel Overlap for the network AsCancelas

Dans	AP Overlap less than or equal 0 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	


5.2.2.4. CO-CHANNEL INTERFERENCE

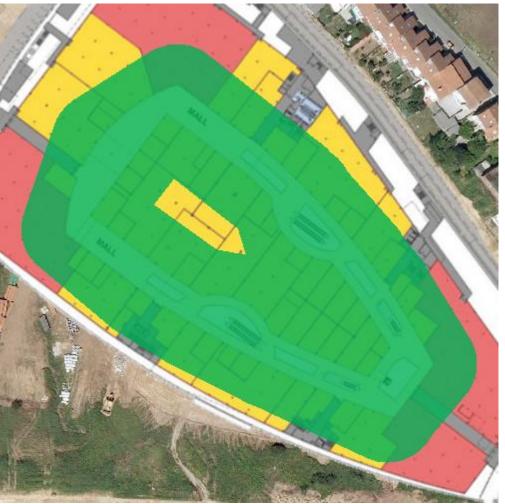
This control displays those areas where co-channel interference parameters are met.

An AP is considered to have a co-channel interference when there is another AP transmitting on the same channel.

As a consequence of channel overlap, access points occupy the same radio spectrum, sharing it and using it alternately, so only one AP will be transmitting at a time.

This kind of interferences worsen communications performance because it is necessary to analyse wireless space before transmitting. If one AP is transmitting, others must wait for this to stop before they can transmit. This makes total transmission time to be divided into the number of APs that transmit in the same frequency.

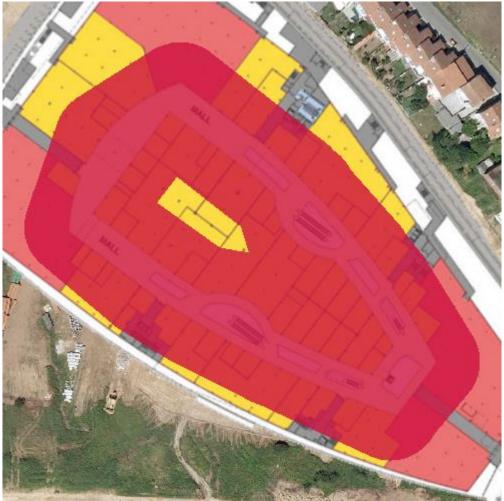
Co-Channel Interference for the network AsCancelas


Dage	Overlapping APs less than or equal 1 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	

5.2.2.2.5. LATENCY

Latency is the time interval between sending a data packet and receiving it back, in this case, latency is the amount of time a packet takes to be transmitted and received back in the wireless space.

Acceptable latency values range from 1-10ms.

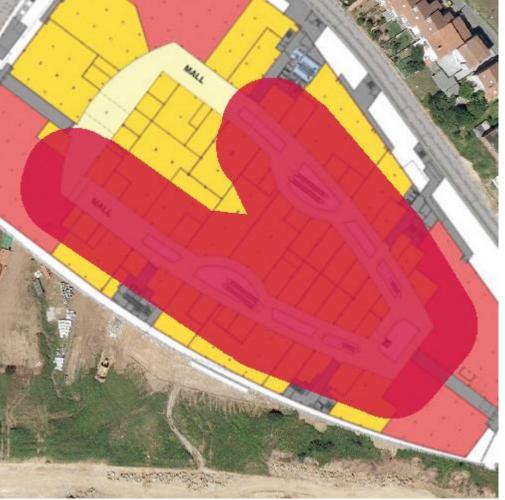

Latency for the network AsCancelas

Pass	Network Latency less than or equal 256ms
Fail	

5.2.2.2.6. BANDWIDTH

The Bandwidth control ensures that minimum bandwidth quality requirements for the connection established by the active survey are met throughout the coverage area.

Bandwidth for the network AsCancelas


Pass Bandwidth greater than or equal 5000 kbps
Fail

5.2.2.7. PACKET LOST

The packet loss rate is the percentage of packets that are lost, in other words, that do not reach their destination at the time of establishing communication, and that are (usually) retransmitted. Packet loss has a negative impact on network performance. When a packet does not reach its destination, packet retransmission is usually requested by the recipient to keep communication flowing normally.

Packet loss rates of under 10% are acceptable and will have a negligible impact on network performance in most cases.

Packet Lost for the network AsCancelas

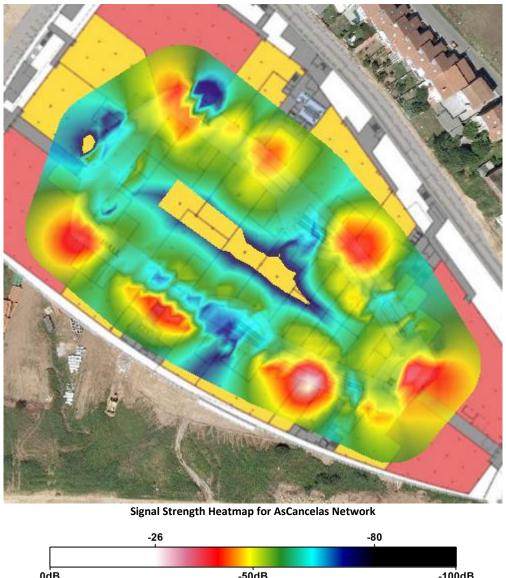
Pass	Ratio Lost less than or equal 25%
Fail	

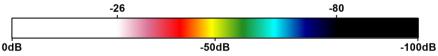
5.2.2.8. Access Point Roaming

The Roaming control shows those areas where Roaming is required by extending network coverage through many different access points. In a wireless infrastructure, multiple access points are deployed to provide coverage throughout the desired area.

Roaming allows moving devices to maintain wireless communication by connecting to new access points within the same network to maintain the quality of communication and prevent degradation of signal strength. This service is called Roaming

Access Point Roaming for the network AsCancelas

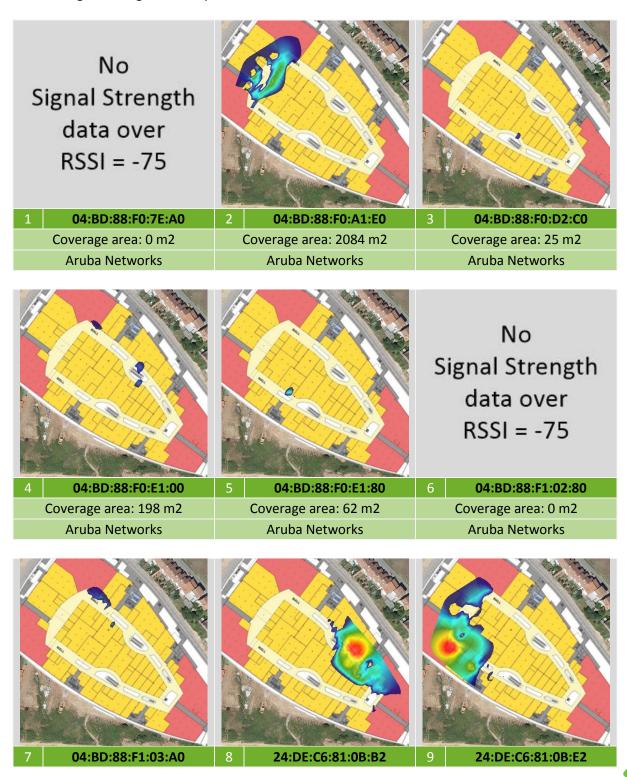

Pass Fail



5.2.3. SURVEY 5.2.3.1. RSSI HEATMAP

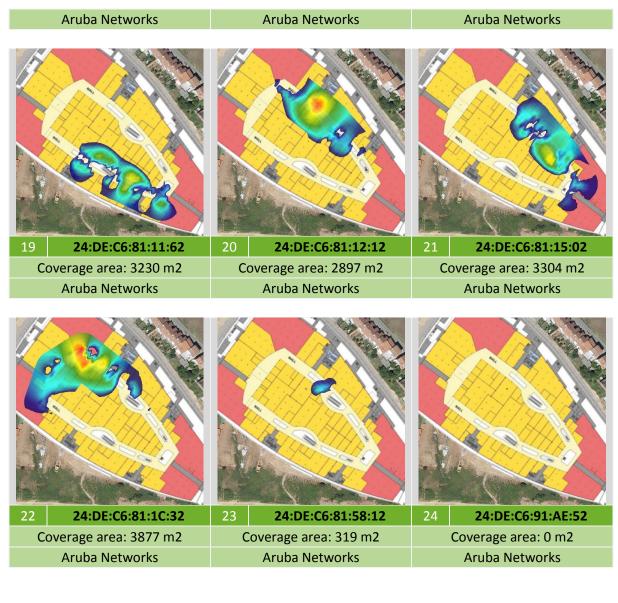
Signal Strength translates as how efficiently the network is reaching the surveyed area, indicating how the **AsCancelas** network is received at each location.

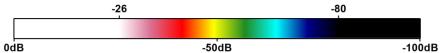
Signal strength values range from 0 db to -100db, being -100db the worse performance. The color scheme is shown below the image.


Network coverage area* 9162 m2

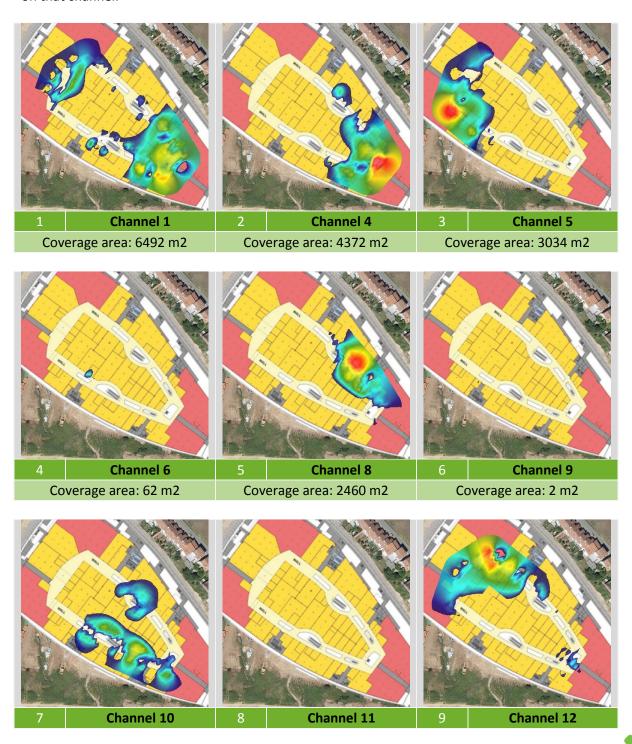
^{*}This information indicates the network coverage area at a signal strength of at least:-75

5.2.3.2. RSSI DETAILED BY AP

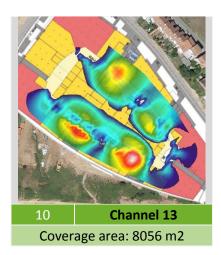

The following table contains a tile view of all BSSIDs associated to the **AsCancelas** network, along with its signal strength heatmap, associated covered area, and device manufacturer.



Coverage area: 282 m2	Coverage area: 2683 m2	Coverage area: 3215 m2
Aruba Networks	Aruba Networks	Aruba Networks
10 24:DE:C6:81:0B:F2	11 24:DE:C6:81:0C:32	12 24:DE:C6:81:0C:72
Coverage area: 4552 m2	Coverage area: 0 m2	Coverage area: 3889 m2
Aruba Networks	Aruba Networks	Aruba Networks
		7
13 24:DE:C6:81:0C:82	14 24:DE:C6:81:0E:02	15 24:DE:C6:81:0E:52
Coverage area: 3520 m2	Coverage area: 2 m2	Coverage area: 868 m2
Coverage area: 3520 m2 Aruba Networks	Coverage area: 2 m2 Aruba Networks	Coverage area: 868 m2 Aruba Networks
Coverage area: 3520 m2	Coverage area: 2 m2	Coverage area: 868 m2



5.2.3.3. RSSI DETAILED BY CHANNEL


The following table contains a tile view of all operative channels on the **AsCancelas** network.

The graph shows the signal strength heatmap, and the coverage area associated with this network on that channel.

Coverage area: 4266 m2 Coverage area: 0 m2 Coverage area: 4065 m2

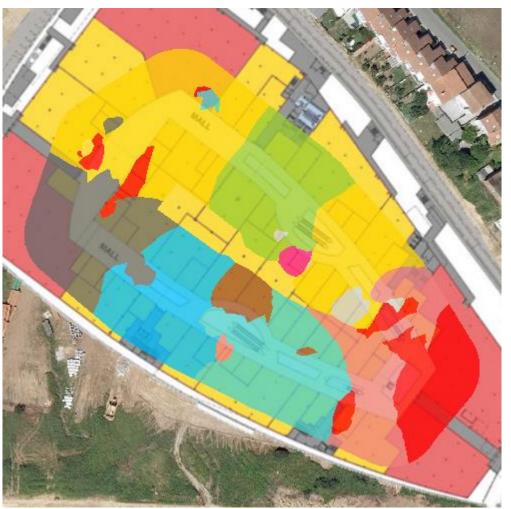
5.2.3.4. NUMBER OF APS

The following image shows the number of access points granting access to the **AsCancelas** network that were detected within the surveyed area.

The graph reveals the existing signal overlapping from the different access points granting access to the same network.

Number of APs for AsCancelas Network

Number of APs	1	2	3	4	5	6	7	8	9	10



5.2.3.5. AP COVERAGE

The following image shows the color coded coverage of every AP propagating the **AsCancelas** network.

If coverage from two or more channels overlap throughout the surveyed area, then the stronger signal channel is display.

Using this graph, you will be able to analyze the appropriate coverage distribution.

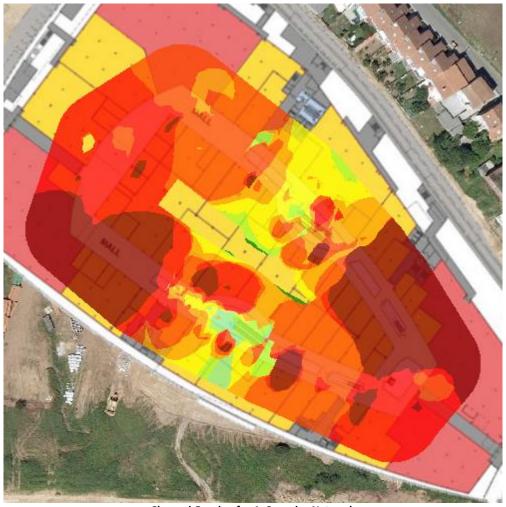
AP Coverage for AsCancelas Network


Access Point	Access Point	Access Point
04:BD:88:F0:7E:A0	04:BD:88:F0:A1:E0	04:BD:88:F0:D2:C0
04:BD:88:F0:E1:00	04:BD:88:F0:E1:80	04:BD:88:F1:02:80
04:BD:88:F1:03:A0	24:DE:C6:81:0B:B2	24:DE:C6:81:0B:E2
24:DE:C6:81:0B:F2	24:DE:C6:81:0C:32	24:DE:C6:81:0C:72
24:DE:C6:81:0C:82	24:DE:C6:81:0E:02	24:DE:C6:81:0E:52
24:DE:C6:81:0E:B2	24:DE:C6:81:0F:02	24:DE:C6:81:0F:A2
24:DE:C6:81:11:62	24:DE:C6:81:12:12	24:DE:C6:81:15:02
24:DE:C6:81:1C:32	24:DE:C6:81:58:12	24:DE:C6:91:AE:52

5.2.3.6. CHANNEL COVERAGE

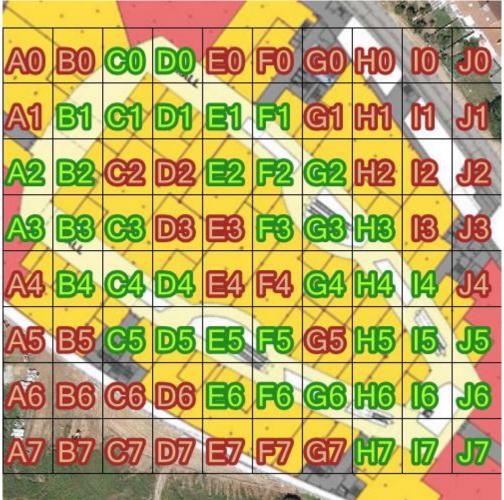
The following image shows the coverage range for every channel in the **AsCancelas** network.

If coverage from two or more channels overlap throughout the surveyed area, then the stronger signal channel is display.


Channel Coverage for AsCancelas Network.

5.2.3.7. CHANNEL OVERLAP

The following image shows the coverage area for each operative channel on the **AsCancelas** network, and the signal overlapping between two or more channels throughout the surveyed area.


Channel Overlap for AsCancelas Network

Channel	1	2	3	4	5	6	7	8	9	10

5.2.3.8. DETAILED GRID

In the following image, the blueprint associated to the surveyed area is divided into quadrants. Each quadrant shows the collected information in that grid.

Detailed Grid for AsCancelas Location

	SURVEY	BEST	Avg			DATA RATE
	POINTS	RSSI	RSSI	NETWORKS (SSIDS)	APs	(Max)
CO	28	-42	-67	AsCancelas	9	216,7
D0	23	-36	-68	AsCancelas	9	216,7
A1	1	-61	-62	AsCancelas	2	130
B1	37	-32	-65	AsCancelas	6	216,7
C1	13	-46	-69	AsCancelas	5	216,7
D1	15	-38	-68	AsCancelas	11	216,7
E1	34	-42	-69	AsCancelas	13	216,7
F1	8	-39	-73	AsCancelas	8	216,7
A2	26	-48	-67	AsCancelas	8	216,7
В2	19	-44	-73	AsCancelas	8	216,7
E2	5	-48	-67	AsCancelas	9	216,7
F2	31	-50	-71	AsCancelas	11	216,7
G2	21	-51	-73	AsCancelas	12	216,7
А3	28	-36	-68	AsCancelas	11	216,7
В3	26	-47	-67	AsCancelas	8	216,7
C3	1	-58	-61	AsCancelas	2	130
F3	6	-56	-73	AsCancelas	9	216,7
G3	32	-44	-72	AsCancelas	14	216,7
Н3	15	-36	-74	AsCancelas	10	130
В4	11	-43	-67	AsCancelas	8	216,7
C4	33	-33	-68	AsCancelas	10	216,7
D4	15	-50	-72	AsCancelas	9	216,7
G4	2	-56	-73	AsCancelas	7	216,7
H4	36	-37	-69	AsCancelas	11	216,7
14	14	-44	-70	AsCancelas	10	130
C5	4	-27	-63	AsCancelas	5	130
D5	21	-27	-73	AsCancelas	11	216,7
E5	30	-44	-71	AsCancelas	10	216,7
F5	15	-51	-68	AsCancelas	9	216,7
H5	6	-44	-61	AsCancelas	6	130
15	39	-42	-71	AsCancelas	14	130
J5	4	-57	-83	AsCancelas	8	130
E6	4	-44	-72	AsCancelas	8	216,7
F6	24	-37	-68	AsCancelas	10	216,7
G6	40	-20	-64	AsCancelas	12	216,7
Н6	22	-46	-69	AsCancelas	11	216,7
16	22	-47	-73	AsCancelas	10	130
J6	26	-29	-67	AsCancelas	12	130

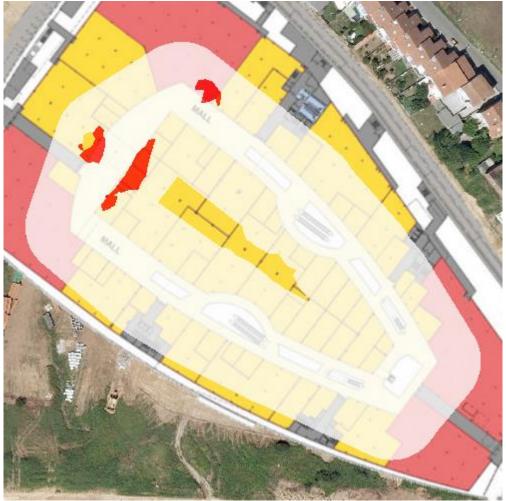
	SURVEY POINTS	BEST RSSI	Avg RSSI	NETWORKS (SSIDs)	APs	DATA RATE (MAX)
H7	17	-36	-71	AsCancelas	10	130
17	24	-35	-71	AsCancelas	8	130
J7	1	-60	-71	AsCancelas	3	216,7

5.2.3.9. SNR HEATMAP

The following image shows the **AsCancelas** network's signal-to-noise ratio throughout the surveyed area.

Signal-to-noise ratio measures the ratio between the Wi-Fi network signal strength and the background noise. Higher noise levels will result in a larger negative impact on communications. This parameter offers valuable information on the effectiveness of communications. These values range from 0 to 100, being 100 the best possible communication quality.

The graph can't be generated due to the absence of the required data.



5.2.3.10. DATA RATE HEATMAP

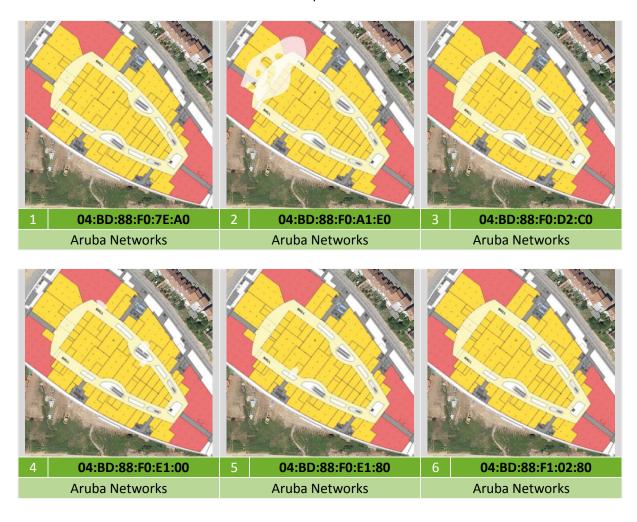
The following image shows the area covered by the APs based on their data transfer rates for the **AsCancelas** network throughout the surveyed area.

Data rate helps determine the maximum data transmission speed among the wireless devices connected to a Wi-Fi network.

This value allows you to establish how consistent a network is when transmitting data across the coverage area, and helps you find those areas where these values greatly differ or the network performance significantly decreases.

Data Rate for AsCancelas Network

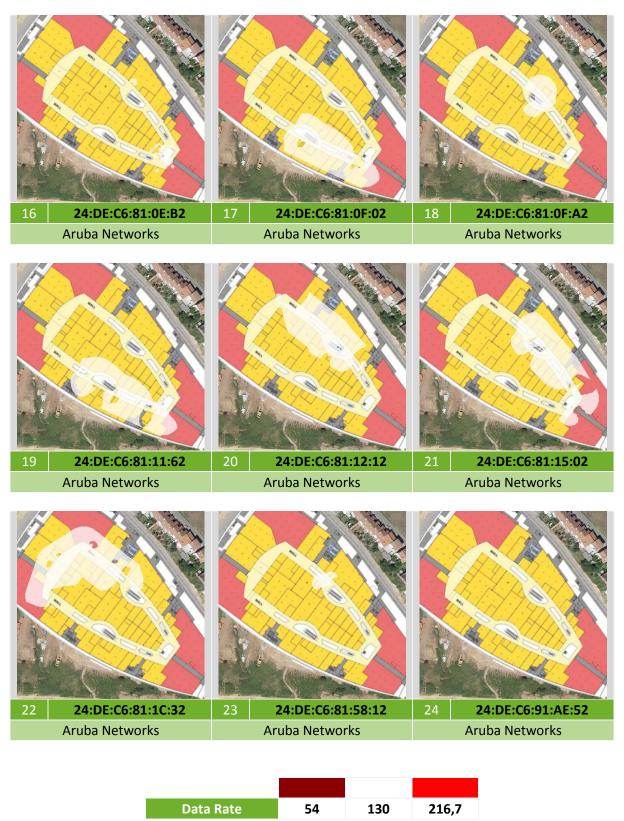
Data Rate Data Rate Data Rate
54 130 216,7



5.2.3.11. DATA RATE DETAILED

The following table shows a tile view of all BSSIDs associated with the **AsCancelas** network, together with the graph indicating the covered area and the maximum supported data transfer rate speed.

Data rate helps determine the maximum data transmission speed between the wireless devices connected to a Wi-Fi network.


It allows you to determine how efficiently a network transmits data throughout a certain area, and if there are blind zones where reduced network performance is observed.

5.2.3.12. CELL DENSITY HEATMAP

The following image shows a heatmap revealing the distribution of all client devices connected to the APs propagating the **AsCancelas** network.

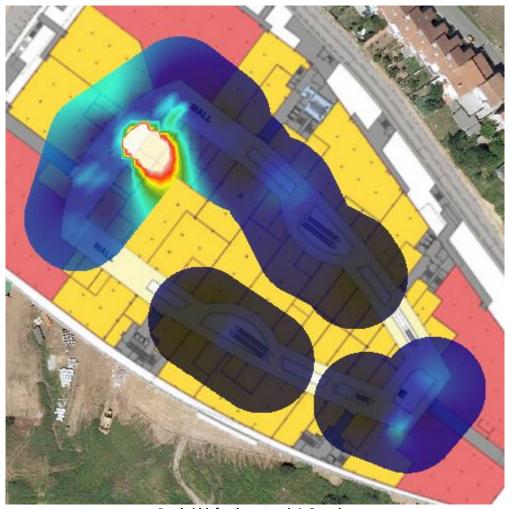
Cell density allows you to spot which zones have the higher number of client devices connected to the network by showing its saturation.

It provides useful information to allow for an even AP distribution according to actual usage.

The graph can't be generated due to the absence of the required data.

5.2.3.13. RETRIES RATE HEATMAP

In an ideal Wi-Fi communication, all sent data packets reach their destination. Otherwise, poor transmission, interferences or any other communication problems can cause the dropped packets to be retransmitted for a correct data transmission. The larger the number of retransmitted or forwarded packets, the larger the communication latency will be, resulting in a lower communication quality.


The graph can't be generated due to the absence of the required data.

5.2.3.14. BANDWIDTH

Bandwidth indicates the amount of data being transmitted through **AsCancelas** network for each area within the network site range.

Bandwidth is measured in kilobytes per seconds, KB/s (1MB/s=1000KB/s), where a higher value translates as a better network performance.

Bandwidth for the network AsCancelas

5.2.3.15. LATENCY

Latency indicates the time delay experienced in the data transfer through **AsCancelas** network for each area within the network site range.

When a data packet is sent, it is received by a receiving device that notifies the transmitting device that the packet has been successfully received. Latency is the period from the time a data packet is sent to the time the packet reception confirmation is received. Latency is measured in milliseconds (ms).

The higher the latency, the lowest the network performance will be. High latency values negatively impact real-time application performance, such as video-conferencing and VoIP communications.

Latency for the network AsCancelas

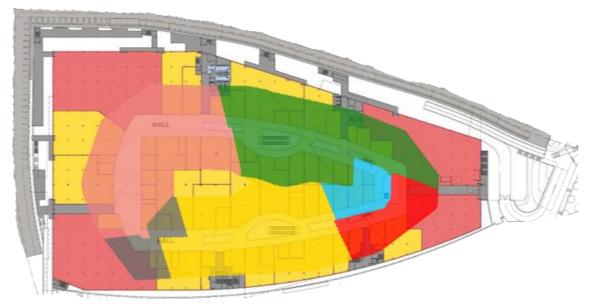
5.2.3.16. PACKET LOSS

In an ideal data communication, all sent data packets reach their destination; otherwise there is a packet loss that negatively impacts the data transmission performance, hence the overall network performance.

When a data packet is lost, if required by the protocol, it should be re-transmitted until a successful reception notification is received. This increases the amount of time necessary for a data unit to be transmitted, reducing the amount of data that can be transmitted per unit of time. The higher this value is, the lower the network performance will be.

The following image shows the areas where data packet loss is experienced within **AsCancelas** network site range.

The graph can't be generated due to the absence of the required data.


5.2.3.17. ROAMING

Data roaming in a Wi-Fi network infrastructure is the ability of a client device to move around within a multiple access point network's coverage area without disconnections.

To ensure roaming in a multiple access point Wi-Fi network, access points' coverage ranges should overlap.

Accordingly, a moving client device will have continuous network coverage, and based on the device's internal settings and access point configuration, network access will be granted through the different access points across the coverage area.

The following image shows all **AsCancelas** network access points to which the device has been connected to while itinerating.

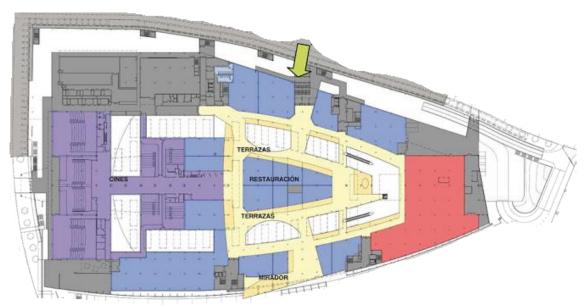
Roaming for the network AsCancelas

Access Point

04:BD:88:F0:A1:F0 24:DE:C6:81:0F:02 **Access Point**

24:DE:C6:81:0C:72 24:DE:C6:81:12:12 **Access Point**

24:DE:C6:81:0C:82 24:DE:C6:81:15:02



6. LOCATION SURVEY: +2 - CINEMA

6.1. LOCATION DETAILS

Short data related to the +2 - Cinema Location

Location Name	+2 - Cinema
Description	Cinema and restaurants
Selected Scans at this	Scan through restaurants
Location	Scan passive + active survey

Blueprint for the location +2 - Cinema

6.1.1. SURVEY ROUTE

The following image shows the path followed at the **+2 - Cinema** location during the site survey, which indicates all locations where data was collected to be later analyzed.

6.1.1.1. SCAN THROUGH RESTAURANTS

Survey Route for +2 - Cinema Location - Scan through restaurants

6.1.1.2. SCAN PASSIVE + ACTIVE SURVEY

Survey Route for +2 - Cinema Location - Scan passive + active survey

6.1.2. "+2 - CINEMA" ACCESS POINT POSITION

The following image shows the approximate positions within the **+2 - Cinema** location of all access points identified during the site survey. These positions are manually configured, or otherwise are automatically estimated based on the measured data.

Physical APs Position for +2 - Cinema Location

	BSSID	SSID	Vendor	CHAN
1	24:DE:C6:81:0C:32	AsCancelas	Aruba Networks	12
2	24:DE:C6:81:0B:F2	AsCancelas	Aruba Networks	1
3	24:DE:C6:91:AE:52	AsCancelas	Aruba Networks	11
4	24:DE:C6:81:11:62	AsCancelas	Aruba Networks	10
5	24:DE:C6:81:15:02	AsCancelas	Aruba Networks	13
6	04:BD:88:F0:E1:00	AsCancelas	Aruba Networks	1
7	04:BD:88:F0:D2:C0	AsCancelas	Aruba Networks	1

6.2. NETWORK SURVEY: ASCANCELAS

6.2.1. NETWORK DETAILS

6.2.1.1. AP-BASED INFORMATION

The following table contains information related to the **AsCancelas** network, which is organized based on its APs:

- SSID: Network identifier offered by the BSSID.
- BSSID: Associated MAC addresses granting network access.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- Security: Types of authentication and encryption supported by the network.
- Vendor: Device manufacturer.

	SSID			AsCancelas	
	BSSID	CHANNEL	FREQ	SECURITY	VENDOR
1	04:BD:88:F0:D2:C0	1	2412	Open	Aruba Networks
2	04:BD:88:F0:E1:00	1	2412	Open	Aruba Networks
3	04:BD:88:F0:E1:80	6	2437	Open	Aruba Networks
4	04:BD:88:F1:03:A0	1	2412	Open	Aruba Networks
5	24:DE:C6:81:0B:B2	10	2457	Open	Aruba Networks
6	24:DE:C6:81:0B:F2	10	2457	Open	Aruba Networks
7	24:DE:C6:81:0C:32	1	2412	Open	Aruba Networks
8	24:DE:C6:81:0C:72	5	2432	Open	Aruba Networks
9	24:DE:C6:81:0C:82	4	2427	Open	Aruba Networks
10	24:DE:C6:81:0E:52	4	2427	Open	Aruba Networks
11	24:DE:C6:81:0E:B2	13	2472	Open	Aruba Networks
12	24:DE:C6:81:0F:02	1	2412	Open	Aruba Networks
13	24:DE:C6:81:0F:A2	12	2467	Open	Aruba Networks
14	24:DE:C6:81:11:62	1	2412	Open	Aruba Networks
15	24:DE:C6:81:12:12	5	2432	Open	Aruba Networks
16	24:DE:C6:81:15:02	13	2472	Open	Aruba Networks
17	24:DE:C6:81:1C:32	12	2467	Open	Aruba Networks
18	24:DE:C6:81:58:12	13	2472	Open	Aruba Networks
19	24:DE:C6:91:AE:52	1	2412	Open	Aruba Networks

6.2.1.2. CHANNEL-BASED INFORMATION

The following table contains **AsCancelas** network related information, which is organized based on the transmitting channels/frequencies:

- SSID: Network identifier offered by the BSSID.
- Channel: Identifier of the frequency associated to the network.
- Frequency: Value of the frequency associated to the network.
- BSSID: Associated MAC addresses granting network access.
- Vendor: Device manufacturer.

SSID		AsCanc	ELAS
CHANNEL	FREQUENCY	BSSID	Vendor
		24:DE:C6:81:0C:32	Aruba Networks
		24:DE:C6:81:0F:02	Aruba Networks
		24:DE:C6:81:11:62	Aruba Networks
		24:DE:C6:91:AE:52	Aruba Networks
1	2412	04:BD:88:F0:D2:C0	Aruba Networks
		04:BD:88:F0:E1:00	Aruba Networks
		04:BD:88:F1:03:A0	Aruba Networks
		24:DE:C6:81:0E:52	Aruba Networks
		24:DE:C6:81:12:12	Aruba Networks
		24:DE:C6:81:0C:82	Aruba Networks
4	2427	24:DE:C6:81:0E:52	Aruba Networks
		24:DE:C6:81:0C:32	Aruba Networks
5	2432	24:DE:C6:81:0C:72	Aruba Networks
3		24:DE:C6:81:12:12	Aruba Networks
6	2437	04:BD:88:F0:E1:80	Aruba Networks
7	2442	24:DE:C6:91:AE:52	Aruba Networks
		24:DE:C6:81:0B:B2	Aruba Networks
10	2457	24:DE:C6:81:0B:F2	Aruba Networks
		24:DE:C6:81:0C:72	Aruba Networks
		24:DE:C6:81:0F:A2	Aruba Networks
12	2467	24:DE:C6:81:15:02	Aruba Networks
		24:DE:C6:81:1C:32	Aruba Networks
		24:DE:C6:81:0E:B2	Aruba Networks
		24:DE:C6:81:15:02	Aruba Networks
		24:DE:C6:81:58:12	Aruba Networks
13	2472	24:DE:C6:81:0B:B2	Aruba Networks
		24:DE:C6:81:0B:F2	Aruba Networks
		24:DE:C6:81:0F:02	Aruba Networks
		24:DE:C6:81:0F:A2	Aruba Networks

SSID	AsCancelas						
CHANNEL	FREQUENCY	BSSID	Vendor				
		24:DE:C6:81:11:62	Aruba Networks				

6.2.1.3. "ASCANCELAS" ACCESS POINT POSITION

The following image shows the approximate positions of all access points identified during the site survey which are publishing the network **AsCancelas.** These positions are manually configured, or otherwise are automatically estimated based on the measured data.

Physical APs Position for AsCancelas Network

	BSSID	SSID	Vendor	CHAN
1	24:DE:C6:81:0C:32	AsCancelas	Aruba Networks	12
2	24:DE:C6:81:0B:F2	AsCancelas	Aruba Networks	1
3	24:DE:C6:91:AE:52	AsCancelas	Aruba Networks	11
4	24:DE:C6:81:11:62	AsCancelas	Aruba Networks	10
5	24:DE:C6:81:15:02	AsCancelas	Aruba Networks	13
6	04:BD:88:F0:E1:00	AsCancelas	Aruba Networks	1
7	04:BD:88:F0:D2:C0	AsCancelas	Aruba Networks	1

6.2.2. WIFI QUALITY

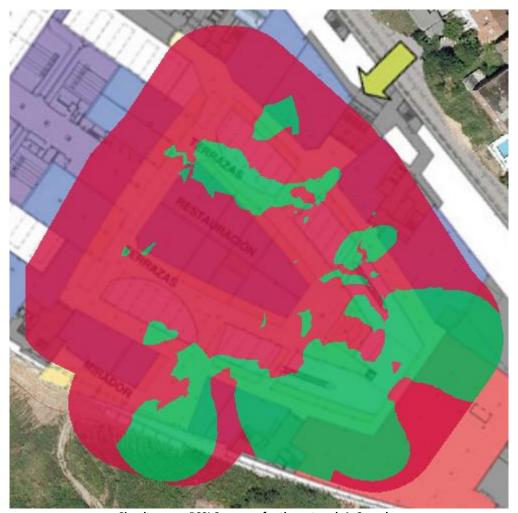
6.2.2.1. WEB BROWSING WIFI REQUIREMENTS

6.2.2.1.1. RSSI COVERAGE

The Rssi Coverage control displays those areas where the signal strength received from any of the selected access points falls below the selected threshold value. Signal strength has a significant impact on the quality of communications. Signal strength is measured in dBm, and ranges from 0 dBm (stronger) to -100 dBm (weaker).

Acceptable values range from 0 to -75 dBm. Proper communication cannot be guaranteed with lower signal strength values.

RSSI Coverage for the network AsCancelas


Pass	RSSI Required greater than or equal -65 dBm
Fail	

6.2.2.1.2. SIMULTANEOUS RSSI COVERAGE

The Simultaneous AP Coverage control displays those areas where signal strength received by any of the network access points is equal or lower than the predetermined threshold value.

To ensure dependable wireless communications, it is necessary, under certain circumstances, that all the points in the coverage area can access a certain number of access points within the network infrastructure, preventing channel overlapping, with at least a minimum signal strength.

Simultaneous RSSI Coverage for the network AsCancelas

Pass	RSSI Required greater than or equal -65 dBm
	Simultaneous APs Required greater than or equal 2 APs
Fail	

6.2.2.1.3. CHANNEL OVERLAP

The Channel Overlapping control shows those areas where adjacent interference requirements are met.

An AP is considered to have an adjacent interference when some of its transmitted frequencies overlap with another AP transmitting on a different channel over the same band.

Channel Overlap for the network AsCancelas

Pass	AP Overlap less than or equal 0 APs
	Gap RSSI greater than or equal 20 dBm
Fail	

6.2.2.1.4. CO-CHANNEL INTERFERENCE

This control displays those areas where co-channel interference parameters are met.

An AP is considered to have a co-channel interference when there is another AP transmitting on the same channel.

As a consequence of channel overlap, access points occupy the same radio spectrum, sharing it and using it alternately, so only one AP will be transmitting at a time.

This kind of interferences worsen communications performance because it is necessary to analyse wireless space before transmitting. If one AP is transmitting, others must wait for this to stop before they can transmit. This makes total transmission time to be divided into the number of APs that transmit in the same frequency.

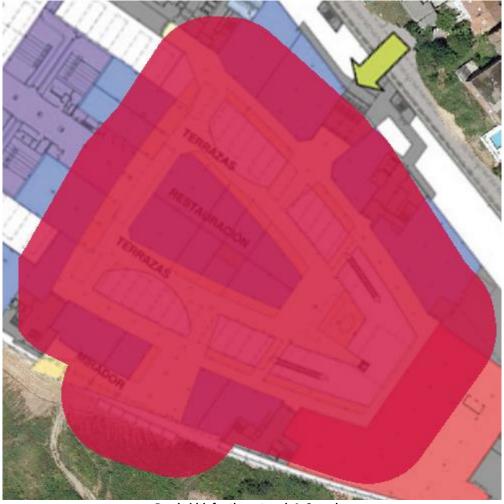
Co-Channel Interference for the network AsCancelas

Door	Overlapping APs less than or equal 1 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	

6.2.2.1.5. LATENCY

Latency is the time interval between sending a data packet and receiving it back, in this case, latency is the amount of time a packet takes to be transmitted and received back in the wireless space.

Acceptable latency values range from 1-10ms.


Latency for the network AsCancelas

Pass	Network Latency less than or equal 100ms
Fail	

6.2.2.1.6. BANDWIDTH

The Bandwidth control ensures that minimum bandwidth quality requirements for the connection established by the active survey are met throughout the coverage area.

Bandwidth for the network AsCancelas

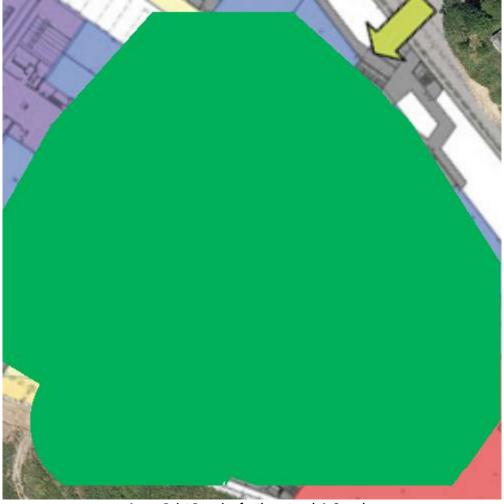
Pass	Bandwidth greater than or equal 320 kbps
Fail	

6.2.2.1.7. PACKET LOST

The packet loss rate is the percentage of packets that are lost, in other words, that do not reach their destination at the time of establishing communication, and that are (usually) retransmitted. Packet loss has a negative impact on network performance. When a packet does not reach its destination, packet retransmission is usually requested by the recipient to keep communication flowing normally.

Packet loss rates of under 10% are acceptable and will have a negligible impact on network performance in most cases.

Packet Lost for the network AsCancelas


Pass	Ratio Lost less than or equal 25%
Fail	

6.2.2.1.8. Access Point Roaming

The Roaming control shows those areas where Roaming is required by extending network coverage through many different access points. In a wireless infrastructure, multiple access points are deployed to provide coverage throughout the desired area.

Roaming allows moving devices to maintain wireless communication by connecting to new access points within the same network to maintain the quality of communication and prevent degradation of signal strength. This service is called Roaming

Access Point Roaming for the network AsCancelas

Pass Fail

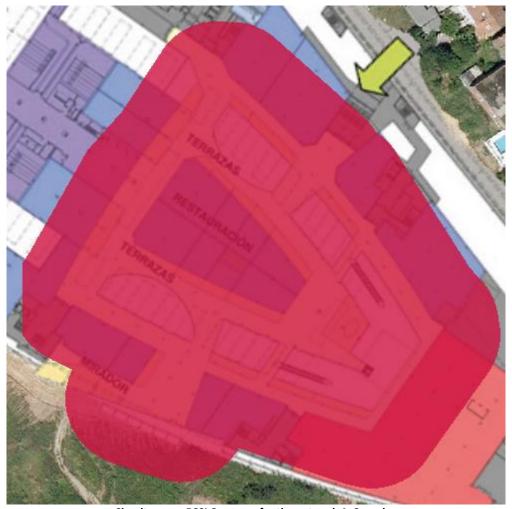
6.2.2.2. VOIP OVER WIFI REQUIREMENTS

6.2.2.1. RSSI COVERAGE

The Rssi Coverage control displays those areas where the signal strength received from any of the selected access points falls below the selected threshold value. Signal strength has a significant impact on the quality of communications. Signal strength is measured in dBm, and ranges from 0 dBm (stronger) to -100 dBm (weaker).

Acceptable values range from 0 to -75 dBm. Proper communication cannot be guaranteed with lower signal strength values.

RSSI Coverage for the network AsCancelas


Pass	RSSI Required greater than or equal -50 dBm
Fail	

6.2.2.2. SIMULTANEOUS RSSI COVERAGE

The Simultaneous AP Coverage control displays those areas where signal strength received by any of the network access points is equal or lower than the predetermined threshold value. To ensure dependable wireless communications, it is necessary, under certain circumstances, that

To ensure dependable wireless communications, it is necessary, under certain circumstances, that all the points in the coverage area can access a certain number of access points within the network infrastructure, preventing channel overlapping, with at least a minimum signal strength.

Simultaneous RSSI Coverage for the network AsCancelas

Pass	RSSI Required greater than or equal -45 dBm
	Simultaneous APs Required greater than or equal 5 APs
Fail	

6.2.2.3. CHANNEL OVERLAP

The Channel Overlapping control shows those areas where adjacent interference requirements are met.

An AP is considered to have an adjacent interference when some of its transmitted frequencies overlap with another AP transmitting on a different channel over the same band.

Channel Overlap for the network AsCancelas

D	AP Overlap less than or equal 0 APs
Pass	Gap RSSI greater than or equal 20 dBm
Fail	

6.2.2.2.4. CO-CHANNEL INTERFERENCE

This control displays those areas where co-channel interference parameters are met.

An AP is considered to have a co-channel interference when there is another AP transmitting on the same channel.

As a consequence of channel overlap, access points occupy the same radio spectrum, sharing it and using it alternately, so only one AP will be transmitting at a time.

This kind of interferences worsen communications performance because it is necessary to analyse wireless space before transmitting. If one AP is transmitting, others must wait for this to stop before they can transmit. This makes total transmission time to be divided into the number of APs that transmit in the same frequency.

Co-Channel Interference for the network AsCancelas

Pass	Overlapping APs less than or equal 1 APs
	Gap RSSI greater than or equal 20 dBm
Fail	

6.2.2.2.5. LATENCY

Latency is the time interval between sending a data packet and receiving it back, in this case, latency is the amount of time a packet takes to be transmitted and received back in the wireless space.

Acceptable latency values range from 1-10ms.


Latency for the network AsCancelas

Pass	Network Latency less than or equal 256ms
Fail	

6.2.2.2.6. BANDWIDTH

The Bandwidth control ensures that minimum bandwidth quality requirements for the connection established by the active survey are met throughout the coverage area.

Bandwidth for the network AsCancelas

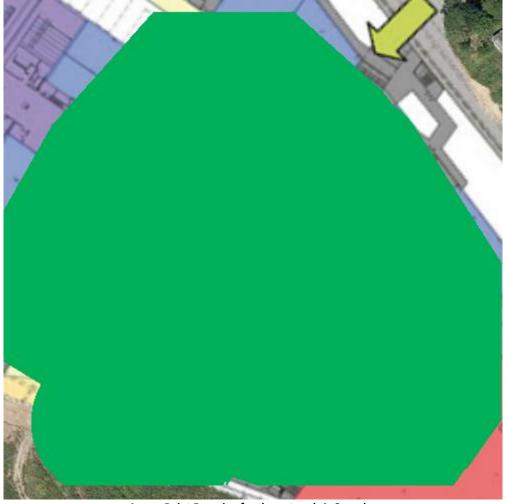
Pass Bandwidth greater than or equal 5000 kbps
Fail

6.2.2.2.7. PACKET LOST

The packet loss rate is the percentage of packets that are lost, in other words, that do not reach their destination at the time of establishing communication, and that are (usually) retransmitted. Packet loss has a negative impact on network performance. When a packet does not reach its destination, packet retransmission is usually requested by the recipient to keep communication flowing normally.

Packet loss rates of under 10% are acceptable and will have a negligible impact on network performance in most cases.

Packet Lost for the network AsCancelas

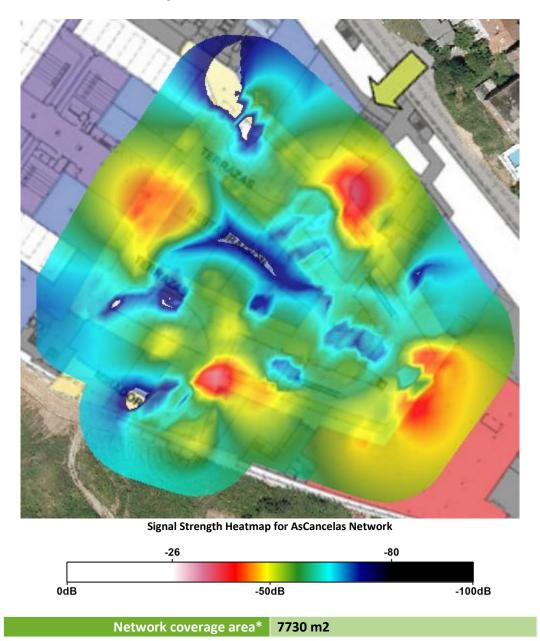

Pass	Ratio Lost less than or equal 25%
Fail	

6.2.2.2.8. Access Point Roaming

The Roaming control shows those areas where Roaming is required by extending network coverage through many different access points. In a wireless infrastructure, multiple access points are deployed to provide coverage throughout the desired area.

Roaming allows moving devices to maintain wireless communication by connecting to new access points within the same network to maintain the quality of communication and prevent degradation of signal strength. This service is called Roaming

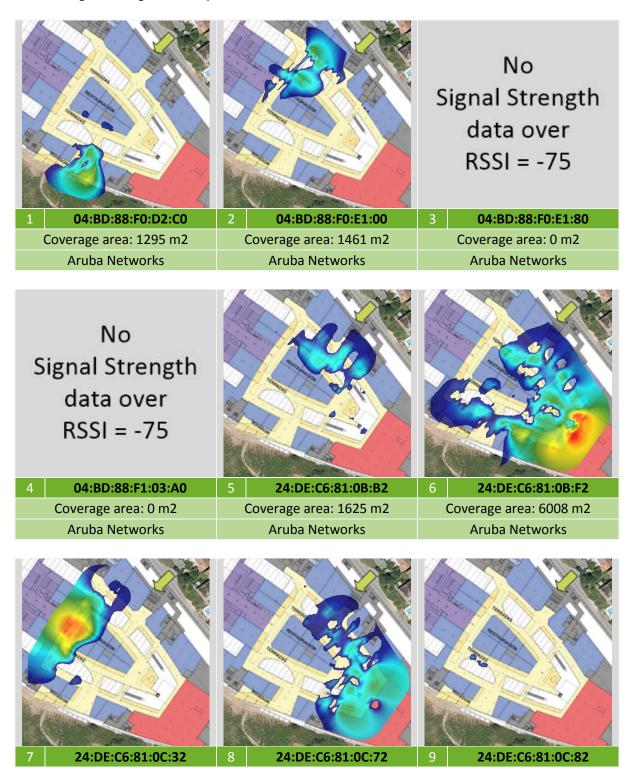
Access Point Roaming for the network AsCancelas


Pass Fail

6.2.3. SURVEY 6.2.3.1. RSSI HEATMAP

Signal Strength translates as how efficiently the network is reaching the surveyed area, indicating how the **AsCancelas** network is received at each location.

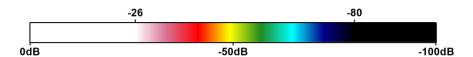
Signal strength values range from 0 db to -100db, being -100db the worse performance. The color scheme is shown below the image.



^{*}This information indicates the network coverage area at a signal strength of at least:-75

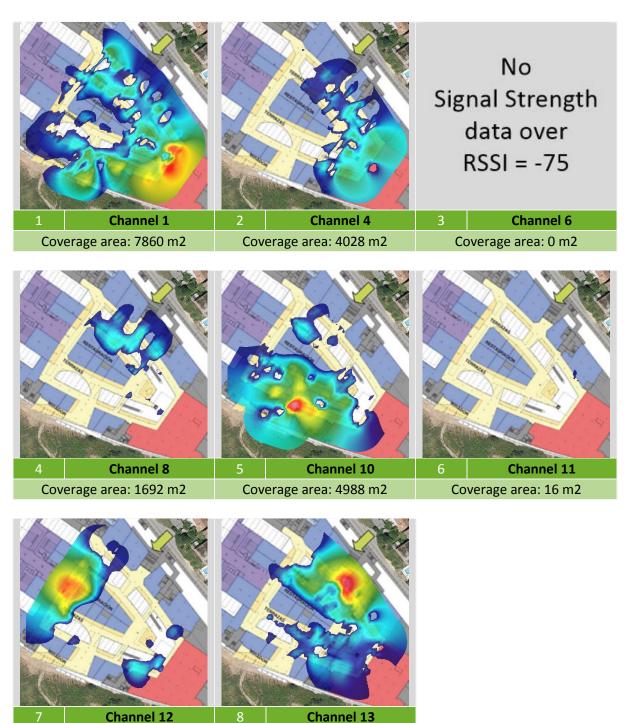
6.2.3.2. RSSI DETAILED BY AP

The following table contains a tile view of all BSSIDs associated to the **AsCancelas** network, along with its signal strength heatmap, associated covered area, and device manufacturer.

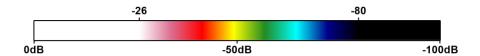


Caylanaga anaa 22022					
Coverage area: 2382 m2	Coverage area: 4225 m2	Coverage area: 49 m2			
Aruba Networks	Aruba Networks	Aruba Networks			
10 24:DE:C6:81:0E:52	11 24:DE:C6:81:0E:B2	12 24:DE:C6:81:0F:02			
Coverage area: 1183 m2	Coverage area: 713 m2	Coverage area: 1657 m2			
Aruba Networks	Aruba Networks	Aruba Networks			
13 24:DE:C6:81:0F:A2	14 24:DE:C6:81:11:62	15 24:DE:C6:81:12:12			
Coverage area: 464 m2	Coverage area: 5079 m2	Coverage area: 28 m2			
Coverage area: 464 m2	Coverage area: 5079 m2	Coverage area: 28 m2			
Coverage area: 464 m2	No Signal Strength data over	No Signal Strength data over			

Aruba Networks Aruba Networks Aruba Networks

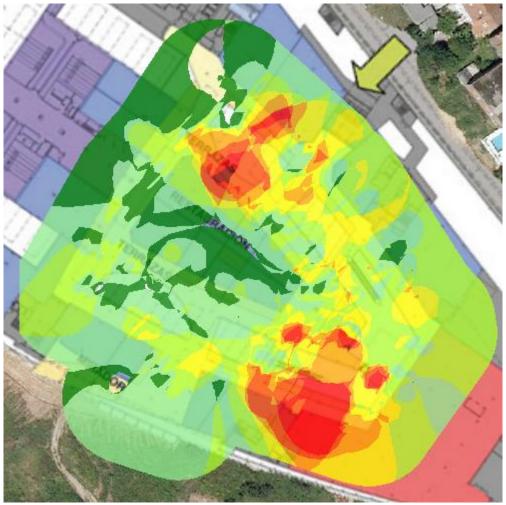


6.2.3.3. RSSI DETAILED BY CHANNEL


The following table contains a tile view of all operative channels on the **AsCancelas** network.

The graph shows the signal strength heatmap, and the coverage area associated with this network on that channel.

Coverage area: 2968 m2 Coverage area: 5277 m2



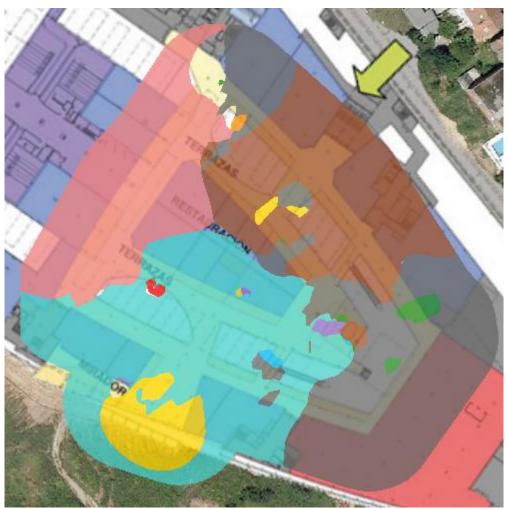
6.2.3.4. NUMBER OF APS

The following image shows the number of access points granting access to the **AsCancelas** network that were detected within the surveyed area.

The graph reveals the existing signal overlapping from the different access points granting access to the same network.

Number of APs for AsCancelas Network

Number of	APs	1	2	3	4	5	6	7	8	9	10



6.2.3.5. AP COVERAGE

The following image shows the color coded coverage of every AP propagating the **AsCancelas** network.

If coverage from two or more channels overlap throughout the surveyed area, then the stronger signal channel is display.

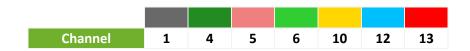
Using this graph, you will be able to analyze the appropriate coverage distribution.

AP Coverage for AsCancelas Network

Access Point
04:BD:88:F0:D2:C0
04:BD:88:F1:03:A0
24:DE:C6:81:0C:32
24:DE:C6:81:0E:52
24:DE:C6:81:0F:A2
24:DE:C6:81:15:02
24:DE:C6:91:AE:52

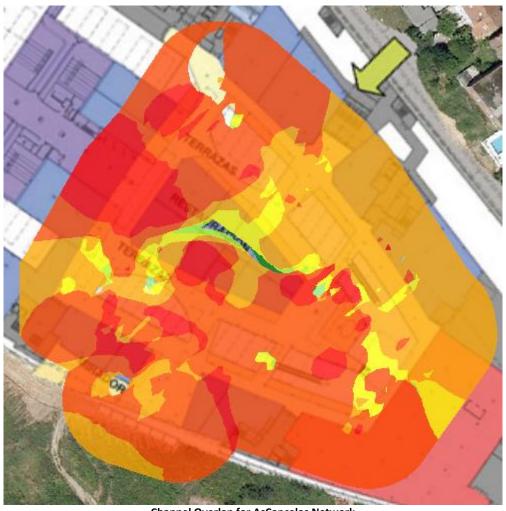
Access Point
04:BD:88:F0:E1:00
24:DE:C6:81:0B:B2
24:DE:C6:81:0C:72
24:DE:C6:81:0E:B2
24:DE:C6:81:11:62
24:DE:C6:81:1C:32

Access Point
04:BD:88:F0:E1:80
24:DE:C6:81:0B:F2
24:DE:C6:81:0C:82
24:DE:C6:81:0F:02
24:DE:C6:81:12:12
24:DE:C6:81:58:12
24:DE:C6:81:58:12


6.2.3.6. CHANNEL COVERAGE

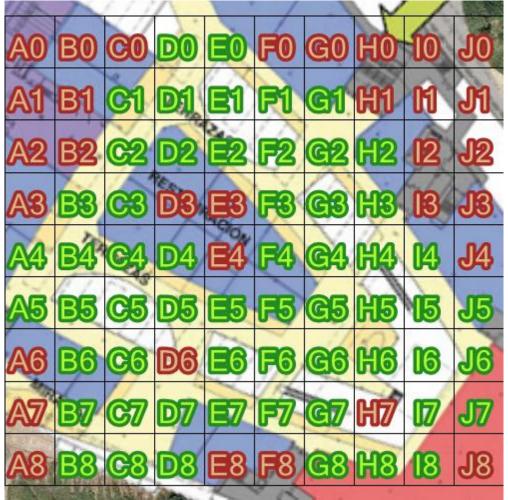
The following image shows the coverage range for every channel in the **AsCancelas** network.

If coverage from two or more channels overlap throughout the surveyed area, then the stronger signal channel is display.


Channel Coverage for AsCancelas Network.

6.2.3.7. CHANNEL OVERLAP

The following image shows the coverage area for each operative channel on the **AsCancelas** network, and the signal overlapping between two or more channels throughout the surveyed area.


Channel Overlap for AsCancelas Network

Channel	1	2	3	4	5	6	7	8	9	10

6.2.3.8. DETAILED GRID

In the following image, the blueprint associated to the surveyed area is divided into quadrants. Each quadrant shows the collected information in that grid.

Detailed Grid for AsCancelas Location

	SURVEY	BEST	Avg			DATA RATE
	POINTS	RSSI	RSSI	NETWORKS (SSIDS)	APs	(Max)
D0	6	-49	-73	AsCancelas	9	216,7
EO	16	-47	-72	AsCancelas	10	216,7
F0	1	-65	-70	AsCancelas	5	216,7
C1	3	-56	-65	AsCancelas	4	216,7
D1	24	-49	-72	AsCancelas	13	216,7
E1	1	-68	-86	AsCancelas	3	130
F1	14	-52	-72	AsCancelas	12	216,7
G1	4	-48	-75	AsCancelas	10	216,7
C2	27	-41	-69	AsCancelas	11	216,7
D2	12	-52	-71	AsCancelas	10	216,7
E2	23	-52	-71	AsCancelas	11	216,7
F2	4	-53	-72	AsCancelas	9	216,7
G2	32	-32	-73	AsCancelas	14	216,7
H2	4	-32	-64	AsCancelas	7	130
В3	18	-39	-72	AsCancelas	12	216,7
С3	14	-44	-69	AsCancelas	8	216,7
F3	19	-55	-72	AsCancelas	11	216,7
G3	2	-62	-72	AsCancelas	6	130
Н3	13	-39	-67	AsCancelas	11	216,7
A4	5	-62	-74	AsCancelas	8	216,7
B4	20	-45	-73	AsCancelas	9	216,7
C4	14	-57	-75	AsCancelas	11	216,7
D4	3	-51	-69	AsCancelas	6	216,7
G4	8	-55	-73	AsCancelas	10	130
H4	12	-46	-72	AsCancelas	11	130
14	9	-54	-69	AsCancelas	8	216,7
A5	14	-63	-73	AsCancelas	7	216,7
B5	5	-62	-74	AsCancelas	7	216,7
C5	2	-57	-73	AsCancelas	5	130
D5	13	-49	-70	AsCancelas	7	216,7
E5	12	-48	-71	AsCancelas	10	216,7
F5	3	-58	-70	AsCancelas	8	216,7
G5	10	-58	-73	AsCancelas	10	216,7
H5	7	-53	-73	AsCancelas	8	130
15	8	-56	-71	AsCancelas	11	216,7
J5	6	-57	-72	AsCancelas	9	130
В6	8	-58	-75	AsCancelas	8	216,7
C6	15	-48	-69	AsCancelas	9	216,7

	Survey Points	BEST RSSI	Avg RSSI	NETWORKS (SSIDS)	APs	DATA RATE (MAX)
E6	2	-54	-69	AsCancelas	5	130
F6	22	-53	-72	AsCancelas	11	216,7
G6	18	-54	-70	AsCancelas	9	130
Н6	5	-55	-70	AsCancelas	8	130
16	1	-49	-74	AsCancelas	8	130
J6	14	-38	-69	AsCancelas	10	216,7
В7	2	-76	-86	AsCancelas	2	130
С7	14	-47	-69	AsCancelas	7	216,7
D7	22	-29	-68	AsCancelas	9	216,7
E7	11	-45	-72	AsCancelas	10	216,7
F7	14	-45	-70	AsCancelas	10	130
G7	3	-56	-74	AsCancelas	9	130
17	15	-35	-69	AsCancelas	11	216,7
J7	1	-46	-68	AsCancelas	7	216,7
B8	2	-54	-72	AsCancelas	3	216,7
C8	16	-52	-73	AsCancelas	7	216,7
D8	5	-48	-71	AsCancelas	7	216,7
G8	11	-53	-68	AsCancelas	10	130
Н8	14	-46	-71	AsCancelas	11	216,7
18	4	-47	-67	AsCancelas	9	130

6.2.3.9. SNR HEATMAP

The following image shows the **AsCancelas** network's signal-to-noise ratio throughout the surveyed area.

Signal-to-noise ratio measures the ratio between the Wi-Fi network signal strength and the background noise. Higher noise levels will result in a larger negative impact on communications. This parameter offers valuable information on the effectiveness of communications. These values range from 0 to 100, being 100 the best possible communication quality.

The graph can't be generated due to the absence of the required data.

6.2.3.10. DATA RATE HEATMAP

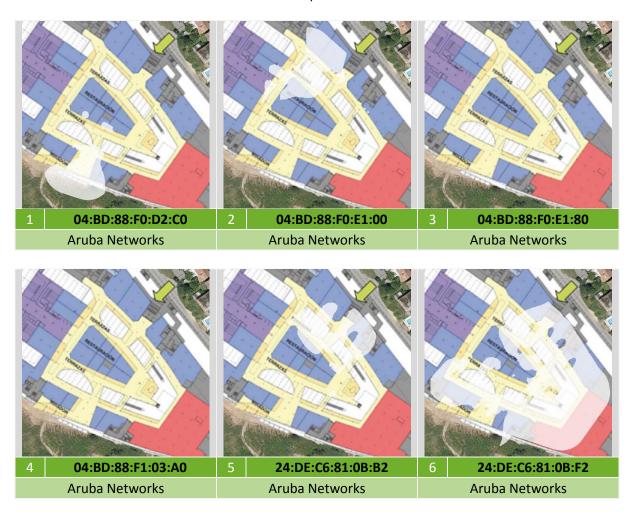
The following image shows the area covered by the APs based on their data transfer rates for the **AsCancelas** network throughout the surveyed area.

Data rate helps determine the maximum data transmission speed among the wireless devices connected to a Wi-Fi network.

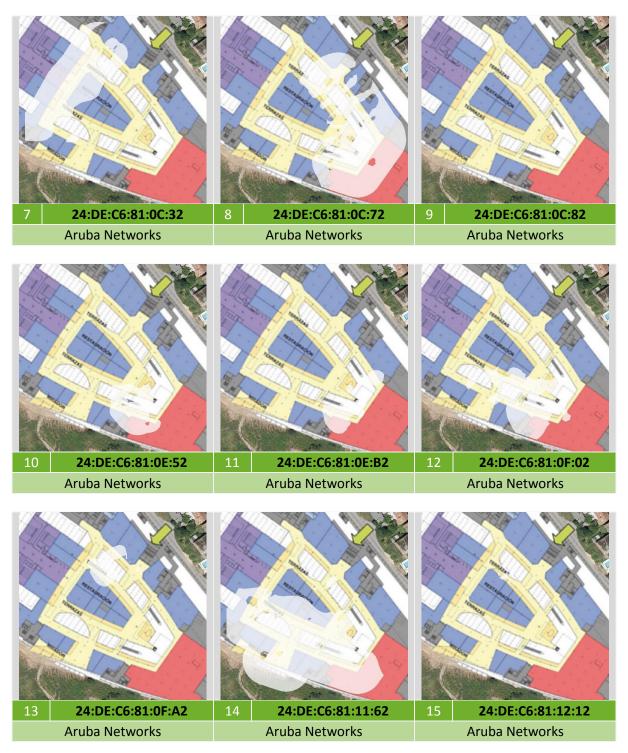
This value allows you to establish how consistent a network is when transmitting data across the coverage area, and helps you find those areas where these values greatly differ or the network performance significantly decreases.

Data Rate for AsCancelas Network

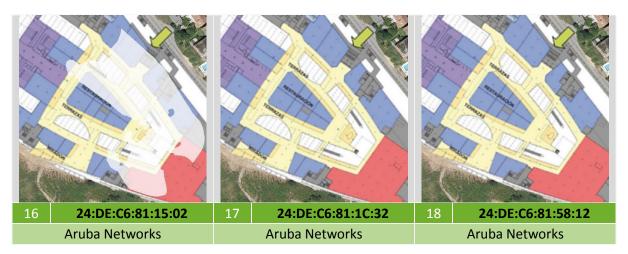
Data Rate
Data Rate
216,7



6.2.3.11. DATA RATE DETAILED


The following table shows a tile view of all BSSIDs associated with the **AsCancelas** network, together with the graph indicating the covered area and the maximum supported data transfer rate speed.

Data rate helps determine the maximum data transmission speed between the wireless devices connected to a Wi-Fi network.


It allows you to determine how efficiently a network transmits data throughout a certain area, and if there are blind zones where reduced network performance is observed.

Data Rate	130	216,7

6.2.3.12. CELL DENSITY HEATMAP

The following image shows a heatmap revealing the distribution of all client devices connected to the APs propagating the **AsCancelas** network.

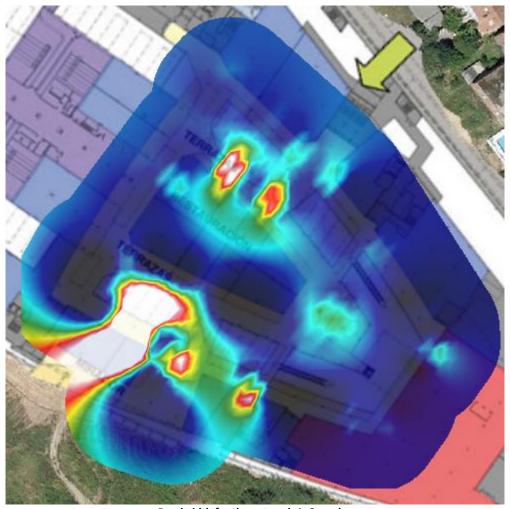
Cell density allows you to spot which zones have the higher number of client devices connected to the network by showing its saturation.

It provides useful information to allow for an even AP distribution according to actual usage.

The graph can't be generated due to the absence of the required data.

6.2.3.13. RETRIES RATE HEATMAP

In an ideal Wi-Fi communication, all sent data packets reach their destination. Otherwise, poor transmission, interferences or any other communication problems can cause the dropped packets to be retransmitted for a correct data transmission. The larger the number of retransmitted or forwarded packets, the larger the communication latency will be, resulting in a lower communication quality.

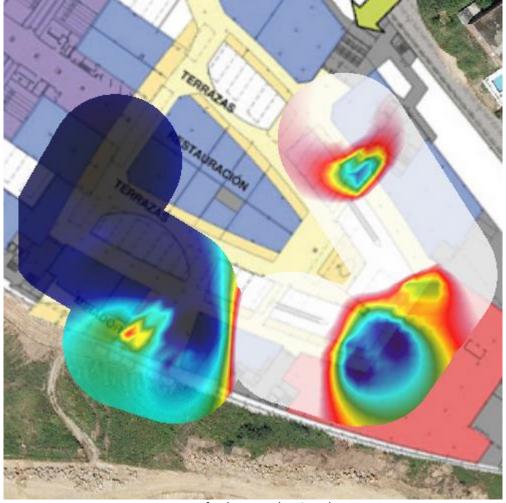

The graph can't be generated due to the absence of the required data.

6.2.3.14. BANDWIDTH

Bandwidth indicates the amount of data being transmitted through **AsCancelas** network for each area within the network site range.

Bandwidth is measured in kilobytes per seconds, KB/s (1MB/s=1000KB/s), where a higher value translates as a better network performance.

Bandwidth for the network AsCancelas



6.2.3.15. LATENCY

Latency indicates the time delay experienced in the data transfer through **AsCancelas** network for each area within the network site range.

When a data packet is sent, it is received by a receiving device that notifies the transmitting device that the packet has been successfully received. Latency is the period from the time a data packet is sent to the time the packet reception confirmation is received. Latency is measured in milliseconds (ms).

The higher the latency, the lowest the network performance will be. High latency values negatively impact real-time application performance, such as video-conferencing and VoIP communications.

Latency for the network AsCancelas



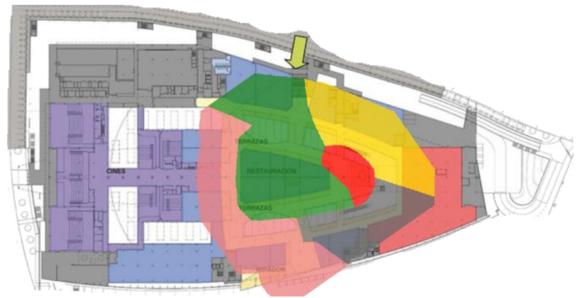
6.2.3.16. PACKET LOSS

In an ideal data communication, all sent data packets reach their destination; otherwise there is a packet loss that negatively impacts the data transmission performance, hence the overall network performance.

When a data packet is lost, if required by the protocol, it should be re-transmitted until a successful reception notification is received. This increases the amount of time necessary for a data unit to be transmitted, reducing the amount of data that can be transmitted per unit of time. The higher this value is, the lower the network performance will be.

The following image shows the areas where data packet loss is experienced within **AsCancelas** network site range.

Packet Loss for the network AsCancelas


6.2.3.17. ROAMING

Data roaming in a Wi-Fi network infrastructure is the ability of a client device to move around within a multiple access point network's coverage area without disconnections.

To ensure roaming in a multiple access point Wi-Fi network, access points' coverage ranges should overlap.

Accordingly, a moving client device will have continuous network coverage, and based on the device's internal settings and access point configuration, network access will be granted through the different access points across the coverage area.

The following image shows all **AsCancelas** network access points to which the device has been connected to while itinerating.

Roaming for the network AsCancelas

Access Point

04:BD:88:F0:D2:D0 24:DE:C6:81:11:62 **Access Point**

04:BD:88:F0:E1:10 24:DE:C6:81:15:02 **Access Point**

24:DE:C6:81:0B:F2

